我的卷积运行报错,麻烦明白的帮我纠正下,谢谢
WARNING:tensorflow:From D:\ProgramData\Anaconda3\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:290: DataSet.__init__ (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
Traceback (most recent call last):
File "D:/code/PycharmProject/mnist_testdemo2/mnist/convolutional.py", line 12, in <module>
y, variables = model.convolutional(x, keep_prob)
File "D:\code\PycharmProject\mnist_testdemo2\mnist\model.py", line 24, in convolutional
W_conv1 = weight_variable([5, 5, 1, 32])
File "D:\code\PycharmProject\mnist_testdemo2\mnist\model.py", line 17, in weight_variable
initial = tf.truncated.normal(shape, stddev=0.1)
AttributeError: module 'tensorflow' has no attribute 'truncated'
------------------------------------------------------
我的model文件代码:
import tensorflow as tf # 线性模型 Y=W*x + b def regressions(x): W = tf.Variable(tf.zeros([784, 10]), name="W") b = tf.Variable(tf.zeros([10]), name='b') y = tf.nn.softmax(tf.matmul(x, W) + b) return y, [W,b] # 卷积模型 def convolutional(x, keep_prob): def conv2d(x, W): return tf.nn.conv2d([1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1]) def weight_variable(shape): initial = tf.truncated.normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) x_image = tf.reshape(x, [-1, 28, 28, 1]) W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # full connection W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) return y, [W_conv1, b_conv1, W_conv2, b_conv2, W_fc1, b_fc1, W_fc2, b_fc2]
我的convolutional代码:
import os import model import tensorflow as tf import input_data data = input_data.read_data_sets('MNIST_data', one_hot=True) #model with tf.variable_scope("convolutional"): x = tf.placeholder(tf.float32, [None, 784], name='x') keep_prob = tf.placeholder(tf.float32) y, variables = model.convolutional(x, keep_prob) #train y_ = tf.placeholder(tf.float32, [None, 10], name='y') cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) saver = tf.train.Saver(variables) with tf.Session() as sess: merged_summary_op = tf.summary.merge_all() summay_writer = tf.summary.FileWriter('./tem/mnist_log/1', sess.graph) summay_writer.add_graph(sess.graph) sess.run(tf.lobal_variables_initializer()) #最好做两万次训练 for i in range(2000): batch = data.train.next_batch(50) if(i % 100 == 0): train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}) print("step %d, training accuracy %g" % (i, train_accuracy)) sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob:0.5}) print(sess.run(accuracy, feed_dict={x: data.test.images, y_: data.test.labels, keep_prob: 1.0})) path = saver.save(sess, os.path.join(os.path.dirname(__file__), 'data', 'convalutional.ckpt', write_meta_graph=False, write_state=False)) print("Saved:", path)