为了账号安全,请及时绑定邮箱和手机立即绑定
  • HDFS缺点

    查看全部
  • HDFS优点

    查看全部
  • DataNode

    查看全部
  • HDFS构架:

    1)数据块

    2)NameNode

    3)DataNode

    查看全部
  • HDFS基本架构:

    1)数据块

    2)NameNode

    3)DataNode


    查看全部
  • HDFS总结

    1. 数据块

    2. NameNode:管理文件系统的命名空间,存放文件元数据;维护这文件系统的所有文件和目录,文件和数据块的映射;记录每个文件中各个块所在数据节点的信息

                                          

    查看全部
  • Hadoop 两大核心

    查看全部
  • HDFS概念

    查看全部
  • Hadoop有两个核心,一个是HDFS——分布式存储,一个是MapReduce 分布式计算。

    查看全部
  • HDFS写流程

    客户端向NameNode发起写数据请求

    分块写入DataNode节点,DataNode自动完成副本备份

    DataNode向NameNode汇报储存完成NameNode通知客户端 

    HDFS读流程

    1. 客户端向NameNode发起读数据请求;

    2. NameNode找出距离最近的DataNode节点信息;

    3. 客户端从DataNode分块下载文件;


    查看全部
  • MapReduce简介

     

    MapReduce是一种编程模型,是一种编程方法,是抽象的理论;

     

    YARN(Haoop2之后的资源管理器)概念

          1.ResourceManager:分配和调度资源;启动并监控ApplicationMaster; 监控NodeManager

          2.ApplicatonMaster:为MR类型的程序申请资源,并分配给内部任务;负责数据的切分;监控任务的执行及容错;

          3.NodeManager:管理单个节点的资源;处理来自ResourceManager的命令;处理来自ApplicationMaster的命令

     

    MapReduce编程模型

          输入一个大文件,通过Split之后,将其分为多个分片;

    每个文件分片由单独的机器去处理,这就是Map方法  ;

    将各个机器计算的结果进行汇总并得到最终的结果,这就是Reduce方法; 


    查看全部
  • HDFS特性

    查看全部
  • 通过Shell命令对HDFS进行操作:与Linux操作文件类似

     

     

    HDFS实战

    常用HDFS Shell命令:

    类Linux系统:ls , cat , mkdir , rm , chmod , chown等

    HDFS文件交互:copyFromLocal, copyToLocal , get , put  

     

    mk.txt 上传到 hdfs系统

    1.在 /home 目录下 新建mk.txt :

    touch(或vi) mk.txt

    2.看一下hdfs根目录下有什么:

     hdfs dfs -ls /

    3.创建test目录 :

    hdfs dfs -mkdir /test

    看一下 

    hdfs dfs -ls /

    4.mk.txt 上传到 test 下 (copyFromLocal)

    hdfs dfs -copyFromLocal /hmoe/mk.txt /test/

    看一下

    hdfs dfs -ls /test

    5.查看mk.txt的内容

    hdfs dfs -cat /test/mk.txt

    6.mk.txt 上传到本地目录下改名为 mk2.txt(copyToLocal)

    hdfs dfs -copyToLocal /test/mk.txt /home/mk2.txt

    看一下本地

    ls

    7.更改test的权限: 读4 写2 执行1

    hdfs dfs -chmod 777 /test/mk.txt

    hdfs dfs -ls /test

    8.帮助文档

    hdfs dfs -help 


    查看全部
  • https://img1.sycdn.imooc.com//5ae02d550001d12807300486.jpg

    HDFS写流程

    客户端向NameNode发起写数据请求

    分块写入DataNode节点,DataNode自动完成副本备份

    DataNode向NameNode汇报储存完成NameNode通知客户端 

    https://img1.sycdn.imooc.com//5ae02d55000100df07180472.jpg

    HDFS读流程

    1. 客户端向NameNode发起读数据请求;

    2. NameNode找出距离最近的DataNode节点信息;

    3. 客户端从DataNode分块下载文件;


    查看全部
    • Hadoop(分布式计算)

    Hadoop是一个开源的大数据框架;

    Hadoop是分布式计算的解决方案;

    Hadoop = HDFS(分布式文件系统) (存储)+ MapReduce(分布式计算)

    • Hadoop核心:

    HDFS分布式文件系统:储存是大数据技术的基础

    MapReduce 编程模型:分布式计算是大数据应用的解决方案

     

    • HDFS总结:

       普通的成百上千台机器;

    TB甚至PB为单位的大量的数据;

    简单便捷的文件获取;

    • Hadoop基础架构

     

    HDFS概念:

       1.数据块 

              数据块是抽象块,而非整个文件作为存储单元;

    默认大小为64M,一般设置128M,备份3个;

       2.NameNode(HDFS一个NameNode多个DataNode组成)

             管理文件系统的命名空间,存放文件元数据;

    维护着文件系统的所有文件和目录,文件与数据块的映射;

    记录每个文件中各个块所在数据节点的信息;

       3.DataNode

            存储并检索数据块;向NameNode更新所存储块的列表;

    HDFS优点:

          适合大文件存储,支持TB、PB级别的数据存储,并有副本策略;

    可以构建在廉价的机器上,并有一定的容错和恢复机制;

    支持流式数据访问,一次写入,多次读取最高效;

    HDFS缺点:

        不支持大量小文件的存储;

    不适合并发写入,不支持文件随机修改;

    不支持随机读等低延时的访问方式;


    查看全部

举报

0/150
提交
取消
课程须知
有Linux命令使用基础,有Python编程基础
老师告诉你能学到什么?
大数据到底是个啥,大数据方向到底怎么样 Hadoop基础原理与两个核心 Hadoop的基础应用 Hadoop生态圈简介 Hadoop生态圈常用开源项目介绍

微信扫码,参与3人拼团

意见反馈 帮助中心 APP下载
官方微信
友情提示:

您好,此课程属于迁移课程,您已购买该课程,无需重复购买,感谢您对慕课网的支持!