-
python装饰器查看全部
-
实例的属性可以像普通变量一样进行操作 xiaohong.grade = xiaohong.grade + 1查看全部
-
关键字lambda 表示匿名函数,冒号前面的 x 表示函数参数。 匿名函数有个限制,就是只能有一个表达式,不写return,返回值就是该表达式的结果。查看全部
-
匿名函数 高阶函数可以接收函数做参数,有些时候,我们不需要显式地定义函数,直接传入匿名函数更方便。 在Python中,对匿名函数提供了有限支持。还是以map()函数为例,计算 f(x)=x2 时,除了定义一个f(x)的函数外,还可以直接传入匿名函数: >>> map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9]) [1, 4, 9, 16, 25, 36, 49, 64, 81] 通过对比可以看出,匿名函数 lambda x: x * x 实际上就是: def f(x): return x * x 关键字lambda 表示匿名函数,冒号前面的 x 表示函数参数。 匿名函数有个限制,就是只能有一个表达式,不写return,返回值就是该表达式的结果。 使用匿名函数,可以不必定义函数名,直接创建一个函数对象,很多时候可以简化代码: >>> sorted([1, 3, 9, 5, 0], lambda x,y: -cmp(x,y)) [9, 5, 3, 1, 0] 返回函数的时候,也可以返回匿名函数: >>> myabs = lambda x: -x if x < 0 else x >>> myabs(-1) 1 >>> myabs(1) 1查看全部
-
Python对属性权限的控制是通过属性名来实现的,如果一个属性由双下划线开头(__),该属性就无法被外部访问 如果一个属性以"__xxx__"的形式定义,那它又可以被外部访问了,以"__xxx__"定义的属性在Python的类中被称为特殊属性,有很多预定义的特殊属性可以使用,通常我们不要把普通属性用"__xxx__"定义查看全部
-
要定义关键字参数,使用 **kw; 除了可以直接使用self.name = 'xxx'设置一个属性外,还可以通过 setattr(self, 'name', 'xxx') 设置属性。 参考代码: class Person(object): def __init__(self, name, gender, birth, **kw): self.name = name self.gender = gender self.birth = birth for k, v in kw.iteritems(): setattr(self, k, v) xiaoming = Person('Xiao Ming', 'Male', '1990-1-1', job='Student') print xiaoming.name print xiaoming.job查看全部
-
在Python 3.x中,字符串统一为unicode,不需要加前缀 u,而以字节存储的str则必须加前缀 b。请利用__future__的unicode_literals在Python 2.7中编写unicode字符串查看全部
-
构造方法:一个特殊的__init__()方法,当创建实例时,__init__()方法被自动调用. __init__() 方法的第一个参数必须是 self(也可以用别的名字,但建议使用习惯用法),后续参数则可以自由指定,和定义函数没有任何区别。查看全部
-
functools.partial就是帮助我们创建一个偏函数的,不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2: >>> import functools >>> int2 = functools.partial(int, base=2) >>> int2('1000000') 64 >>> int2('1010101') 85 所以,functools.partial可以把一个参数多的函数变成一个参数少的新函数,少的参数需要在创建时指定默认值,这样,新函数调用的难度就降低了。查看全部
-
使用匿名函数查看全部
-
按照 Python 的编程习惯,类名以大写字母开头,紧接着是(object),表示该类是从哪个类继承下来的。现在我们只需要简单地从object类继承。查看全部
-
由于decorator返回的新函数函数名已经不是'f2',而是@log内部定义的'wrapper'。这对于那些依赖函数名的代码就会失效。decorator还改变了函数的__doc__等其它属性。如果要让调用者看不出一个函数经过了@decorator的“改造”,就需要把原函数的一些属性复制到新函数中: def log(f): def wrapper(*args, **kw): print 'call...' return f(*args, **kw) wrapper.__name__ = f.__name__ wrapper.__doc__ = f.__doc__ return wrapper 这样写decorator很不方便,因为我们也很难把原函数的所有必要属性都一个一个复制到新函数上,所以Python内置的functools可以用来自动化完成这个“复制”的任务: import functools def log(f): @functools.wraps(f) def wrapper(*args, **kw): print 'call...' return f(*args, **kw) return wrapper查看全部
-
闭包的特点是返回的函数还引用了外层函数的局部变量,所以,要正确使用闭包,就要确保引用的局部变量在函数返回后不能变。返回函数不要引用任何循环变量,或者后续会发生变化的变量。查看全部
-
闭包 在函数内部定义的函数和外部定义的函数是一样的,只是他们无法被外部访问: def g(): print 'g()...' def f(): print 'f()...' return g 将 g 的定义移入函数 f 内部,防止其他代码调用 g: def f(): print 'f()...' def g(): print 'g()...' return g 但是,考察上一小节定义的 calc_sum 函数: def calc_sum(lst): def lazy_sum(): return sum(lst) return lazy_sum 注意: 发现没法把 lazy_sum 移到 calc_sum 的外部,因为它引用了 calc_sum 的参数 lst。 像这种内层函数引用了外层函数的变量(参数也算变量),然后返回内层函数的情况,称为闭包(Closure)。 闭包的特点是返回的函数还引用了外层函数的局部变量,所以,要正确使用闭包,就要确保引用的局部变量在函数返回后不能变。举例如下: # 希望一次返回3个函数,分别计算1x1,2x2,3x3: def count(): fs = [] for i in range(1, 4): def f(): return i*i fs.append(f) return fs f1, f2, f3 = count() 你可能认为调用f1(),f2()和f3()结果应该是1,4,9,但实际结果全部都是 9(请自己动手验证)。 原因就是当count()函数返回了3个函数时,这3个函数所引用的变量 i 的值已经变成了3。由于f1、f2、f3并没有被调用,所以,此时他们并未计算 i*i,当 f1 被调用时: >>> f1() 9 # 因为f1现在才计算i*i,但现在i的值已经变为3 因此,返回函数不要引用任何循环变量,或者后续会发生变化的变量。查看全部
-
内层函数引用了外层函数的变量(参数也算变量),然后返回内层函数的情况,称为闭包(Closure)。查看全部
举报
0/150
提交
取消