-
dict除了values()方法外,还有一个 itervalues() 方法,用 itervalues() 方法替代 values() 方法,迭代效果完全一样:
那这两个方法有何不同之处呢?
1. values() 方法实际上把一个 dict 转换成了包含 value 的list。
2. 但是 itervalues() 方法不会转换,它会在迭代过程中依次从 dict 中取出 value,所以 itervalues() 方法比 values() 方法节省了生成 list 所需的内存。
3. 打印 itervalues() 发现它返回一个 <dictionary-valueiterator> 对象,这说明在Python中,for 循环可作用的迭代对象远不止 list,tuple,str,unicode,dict等,任何可迭代对象都可以作用于for循环,而内部如何迭代我们通常并不用关心。
如果一个对象说自己可迭代,那我们就直接用 for 循环去迭代它,可见,迭代是一种抽象的数据操作,它不对迭代对象内部的数据有任何要求。
查看全部 -
zip()函数可以把两个 list 变成一个 list:
>>> zip([10, 20, 30], ['A', 'B', 'C']) [(10, 'A'), (20, 'B'), (30, 'C')]
查看全部 -
索引迭代:迭代永远是取出元素本身,而非元素的索引。
对于有序集合,元素确实是有索引的。
有的时候,我们确实想在 for 循环中拿到索引,怎么办?方法是使用 enumerate() 函数:
使用 enumerate() 函数,我们可以在for循环中同时绑定索引index和元素name。但是,这不是 enumerate() 的特殊语法。实际上,enumerate() 函数把:
['Adam', 'Lisa', 'Bart', 'Paul']
变成了类似:
[(0, 'Adam'), (1, 'Lisa'), (2, 'Bart'), (3, 'Paul')]
因此,迭代的每一个元素实际上是一个tuple。
可见,索引迭代也不是真的按索引访问,而是由 enumerate() 函数自动把每个元素变成 (index, element) 这样的tuple,再迭代,就同时获得了索引和元素本身。
查看全部 -
什么是迭代:在Python中,如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们成为迭代(Iteration)。
因为 Python 的 for循环不仅可以用在list或tuple上,还可以作用在其他任何可迭代对象上。
因此,迭代操作就是对于一个集合,无论该集合是有序还是无序,我们用 for 循环总是可以依次取出集合的每一个元素。
注意: 集合是指包含一组元素的数据结构,我们已经介绍的包括: 1. 有序集合:list,tuple,str和unicode; 2. 无序集合:set 3. 无序集合并且具有 key-value 对:dict
而迭代是一个动词,它指的是一种操作,在Python中,就是 for 循环。
迭代与按下标访问数组最大的不同是,后者是一种具体的迭代实现方式,而前者只关心迭代结果,根本不关心迭代内部是如何实现的。
查看全部 -
对字符串切片
字符串 'xxx'和 Unicode字符串 u'xxx'也可以看成是一种list,每个元素就是一个字符。
Python没有针对字符串的截取函数,只需要切片一个操作就可以完成。
字符串有个方法 upper() 可以把字符变成大写字母:
>>> 'abc'.upper() 'ABC'
取除首字母外的字符串用[1:]
查看全部 -
对于list,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,记住倒数第一个元素的索引是-1。倒序切片包含起始索引,不包含结束索引。
>>> L[-2:]//后面两个数据 >>> L[:-2]//前面两个数据 >>> L[-3:-1]//不包含最后一个的倒数两个数据
查看全部 -
对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化lis的繁琐操作。
如果第一个索引是0,还可以省略:
>>> L[:3] ['Adam', 'Lisa', 'Bart']
也可以从索引1开始,取出2个元素出来:
>>> L[1:3] ['Lisa', 'Bart']
只用一个 : ,表示从头到尾:
>>> L[:] ['Adam', 'Lisa', 'Bart', 'Paul']
切片操作还可以指定第三个参数:
>>> L[::2] ['Adam', 'Bart']
第三个参数表示每N个取一个,上面的 L[::2] 会每两个元素取出一个来,也就是隔一个取一个。
把list换成tuple,切片操作完全相同,只是切片的结果也变成了tuple。
查看全部 -
由于set存储的是一组不重复的无序元素,因此,更新set主要做两件事:
一是把新的元素添加到set中,
添加元素时,用set的add()方法:
二是把已有元素从set中删除:
删除set中的元素时,用set的remove()方法:
所以用add()可以直接添加,而remove()前需要判断。
查看全部 -
直接使用 for 循环可以遍历 set 的元素。
注意: 观察 for 循环在遍历set时,元素的顺序和list的顺序很可能是不同的,而且不同的机器上运行的结果也可能不同。
查看全部 -
set的内部结构和dict很像,唯一区别是不存储value,因此,判断一个元素是否在set中速度很快。
set存储的元素和dict的key类似,必须是不变对象,因此,任何可变对象是不能放入set中的。
最后,set存储的元素也是没有顺序的。
查看全部 -
由于set存储的是无序集合,所以我们没法通过索引来访问。
访问 set中的某个元素实际上就是判断一个元素是否在set中。
查看全部 -
dict的作用是建立一组 key 和一组 value 的映射关系,dict的key是不能重复的。
有的时候,我们只想要 dict 的 key,不关心 key 对应的 value,目的就是保证这个集合的元素不会重复,这时,set就派上用场了。
set 持有一系列元素,这一点和 list 很像,但是set的元素没有重复,而且是无序的,这点和 dict 的 key很像。
注意:打印的顺序和原始 list 的顺序有可能是不同的,因为set内部存储的元素是无序的。
set不能包含重复的元素,set会自动去掉重复的元素,原来的list有4个元素,但set只有3个元素。
查看全部 -
由于dict也是一个集合,所以,遍历dict和遍历list类似,都可以通过 for 循环实现。
直接使用for循环可以遍历 dict 的 key:
>>> d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 } >>> for key in d: ... print key ... Lisa Adam Bart
由于通过 key 可以获取对应的 value,因此,在循环体内,可以获取到value的值。
查看全部 -
dict的第一个特点是查找速度快,无论dict有10个元素还是10万个元素,查找速度都一样。而list的查找速度随着元素增加而逐渐下降。
不过dict的查找速度快不是没有代价的,dict的缺点是占用内存大,还会浪费很多内容,list正好相反,占用内存小,但是查找速度慢。
由于dict是按 key 查找,所以,在一个dict中,key不能重复。
dict的第二个特点就是存储的key-value序对是没有顺序的!这和list不一样:
d = { 'Adam': 95, 'Lisa': 85, 'Bart': 59 }
当我们试图打印这个dict时:
>>> print d {'Lisa': 85, 'Adam': 95, 'Bart': 59}
打印的顺序不一定是我们创建时的顺序,而且,不同的机器打印的顺序都可能不同,这说明dict内部是无序的,不能用dict存储有序的集合。
dict的第三个特点是作为 key 的元素必须不可变,Python的基本类型如字符串、整数、浮点数都是不可变的,都可以作为 key。但是list是可变的,就不能作为 key。
查看全部 -
可以简单地使用 d[key] 的形式来查找对应的 value,这和 list 很像,不同之处是,list 必须使用索引返回对应的元素,而dict使用key:
注意: 通过 key 访问 dict 的value,只要 key 存在,dict就返回对应的value。如果key不存在,会直接报错:KeyError。
要避免 KeyError 发生,有两个办法:
一是先判断一下 key 是否存在,用 in 操作符:
if 'Paul' in d: print d['Paul']
如果 'Paul' 不存在,if语句判断为False,自然不会执行 print d['Paul'] ,从而避免了错误。
二是使用dict本身提供的一个 get 方法,在Key不存在的时候,返回None:
>>> print d.get('Bart') 59 >>> print d.get('Paul') None
查看全部
举报