import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.svm import SVC
def generateData(n):
"""
生成模型所需数据
"""
np.random.seed(2046)
X = np.r_[np.random.randn(n, 2) - [1, 1], np.random.randn(n, 2) + [3, 3]]
Y = [[0]] * n + [[1]] * n
data = np.concatenate((Y, X), axis=1)
data = pd.DataFrame(data, columns=["y", "x1", "x2"])
hardMargin = [[0, 0, 2], [1, 1, -1]]
hardMargin = pd.DataFrame(hardMargin, columns=["y", "x1", "x2"])
data = data.append(hardMargin)
return data
def hardSoftMargin(data):
"""
从小到大,用不同的损失系数训练模型
"""
C = []
res = []
for i in range(-1, 5):
C_ = 10 ** i
model = SVC(C=C_, kernel="linear")
model.fit(data[["x1", "x2"]], data["y"])
res.append(model)
C.append(C_)
visualize(data, C, res)
def visualize(data, C, res):
"""
将模型结果可视化
"""
# 创建一个图形框
fig = plt.figure(figsize=(12, 6), dpi=80)
# 在图形框里画两幅图
ax = fig.add_subplot(1, 2, 1)
label1 = data[data["y"]>0]
ax.scatter(label1[["x1"]], label1[["x2"]], marker="o")
label0 = data[data["y"]==0]
ax.scatter(label0[["x1"]], label0[["x2"]], marker="^", color="k")
x1 = np.linspace(-4, 6, 100)
x2 = np.linspace(-8, 8, 100)
X1, X2 = np.meshgrid(x1, x2)
# Soft margin
soft = res[0].decision_function(np.c_[X1.ravel(), X2.ravel()])
soft = soft.reshape(X1.shape)
CS = ax.contour(X1, X2, soft, levels=[-1, 0, 1], colors=["r", "r", "r"],
linestyles=["--", "-", "--"])
# Hard margin
hard = res[-1].decision_function(np.c_[X1.ravel(), X2.ravel()])
hard = hard.reshape(X1.shape)
ax.contour(X1, X2, hard, levels=[-1, 0, 1], colors=["g", "g", "g"],
linestyles=["--", "-.", "--"])
ax1 = fig.add_subplot(1, 2, 2)
# Python2和Python3的map并不兼容,所以使用list(map)
coef = list(map(lambda x: x.coef_, res))
margin = list(map(lambda x: 2.0 / np.sqrt(x.dot(x.T)).item(), coef))
ax1.plot(C, margin, label="margin width")
ax1.set_xscale('log')
legend = plt.legend(shadow=True, loc="best")
plt.show()
data = generateData(20)
hardSoftMargin(data)
Tips: 带箭头的注释
import numpy as np
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(5, 5))
ax.set_aspect(1)
x1 = -1 + np.random.randn(100)
y1 = -1 + np.random.randn(100)
x2 = 1. + np.random.randn(100)
y2 = 1. + np.random.randn(100)
ax.scatter(x1, y1, color="r")
ax.scatter(x2, y2, color="g")
bbox_props = dict(boxstyle="round", fc="w", ec="0.5", alpha=0.9)
ax.text(-2, -2, "Sample A", ha="center", va="center", size=20,
bbox=bbox_props)
ax.text(2, 2, "Sample B", ha="center", va="center", size=20,
bbox=bbox_props)
bbox_props = dict(boxstyle="rarrow", fc=(0.8, 0.9, 0.9), ec="b", lw=2)
t = ax.text(0, 0, "Direction", ha="center", va="center", rotation=45,
size=15,
bbox=bbox_props)
bb = t.get_bbox_patch()
bb.set_boxstyle("rarrow", pad=0.6)
ax.set_xlim(-4, 4)
ax.set_ylim(-4, 4)
plt.show()
点击查看更多内容
为 TA 点赞
评论
共同学习,写下你的评论
评论加载中...
作者其他优质文章
正在加载中
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦