为了账号安全,请及时绑定邮箱和手机立即绑定

Java源码阅读之LinkedList - JDK1.8

标签:
Java 算法

阅读优秀的源码是提升编程技巧的重要手段之一。
如有不对的地方,欢迎指正~
转载请注明出处http://www.imooc.com/u/125243

前言

前文基于缓冲数组的ArrayList已经分析过,那么同样作为List实现的LinkedList又有什么不一样呢?

在阅读LinkedList源码之前,开头处先简单总结一下两者的区别

ArrayList

  • 基于缓冲数组进行数据存储
  • 查询/修改方便,因为基于下标容易定位数据
  • 插入/删除不方便,需要移动数据

LinkedList

  • 基于双向链表进行数据存储
  • 查询/修改不方便,因为要移动指针
  • 插入/删除方便,因为基于指针,不需要移动数据

带着这些概念,再次打开你的IDE,挽起袖子,开撸代码,加上注释,总计1262行代码,比ArrayList还少呢。

基本介绍

静态常量

嗯,没有,你没看错,LinkedList内部没有含业务属性的静态常量。

成员变量

工欲善其事,必先利其器。

虽然没什么太大关系,但为了提供逼格还是来了个引用。

要透彻理解整个LinkedList,那首先得先了解下它的内部提供了哪些成员变量,分别是做什么用的,这样有助于我们在看功能方法时提高效率。

其实,LinkedList内部定义的成员变量也少,但是没办法,谁让我为了提升篇幅,多说两句了。

/**
 * 大小
 */
transient int size = 0;

/**
 * 首节点
 * 恒定的: (first == null && last == null) ||
 *            (first.prev == null && first.item != null)
 */
transient Node<E> first;

/**
 * 尾节点
 * 恒定的: (first == null && last == null) ||
 *            (last.next == null && last.item != null)
 */
transient Node<E> last;

可以看出来首节点/尾节点都是Node<E>的实例,那么Node<E>是何方神圣呢

它是一个私有的静态内部类,内部定义了当前元素和前置/后继指针,和一个构造函数,是整个双向链表的基础。

private static class Node<E> {
    E item;
    Node<E> next;
    Node<E> prev;

    Node(Node<E> prev, E element, Node<E> next) {
        this.item = element;
        this.next = next;
        this.prev = prev;
    }
}

构造函数

/**
 * 构造一个空的List
 */
public LinkedList() {
}

/**
 * 根据给定的集合构造一个List
 *
 * @param  c the collection whose elements are to be placed into this list
 * @throws NullPointerException if the specified collection is null
 */
public LinkedList(Collection<? extends E> c) {
    //调用上面的构造函数
    this();
    //添加集合到List中
    addAll(c);
}

简洁明了。你应该也注意到了第二个构造函数中的addAll方法,看名字也知道是将集合c中的所有元素添加到LinkedList中。所以不能错过,往下看

可以看到,addAll(Collection<? extends E> c)是调用addAll(int index, Collection<? extends E> c)的,而这两个方法都是public的,第一个方法是在链表尾部添加指定的集合,而第二个方法比第一个方法多了一个参数,用来指定在某个位置添加指定集合。

/**
 * 将指定集合的所有元素添加都list尾部
 * 
 * 如果操作过程中指定的集合被修改,则此操作的行为未定义。
 * (注意,如果指定的集合是该列表,并且它不是空的,则会发生这种情况。)
 * 其实就是线程不安全。
 *
 * @param c collection containing elements to be added to this list
 * @return {@code true} if this list changed as a result of the call
 * @throws NullPointerException if the specified collection is null
 */
public boolean addAll(Collection<? extends E> c) {
    return addAll(size, c);
}

/**
 * 
 * 从指定位置插入指定集合的所有元素
 *
 * @param index index at which to insert the first element
 *              from the specified collection
 * @param c collection containing elements to be added to this list
 * @return {@code true} if this list changed as a result of the call
 * @throws IndexOutOfBoundsException {@inheritDoc}
 * @throws NullPointerException if the specified collection is null
 */
public boolean addAll(int index, Collection<? extends E> c) {
    //检查指针是否合法
    checkPositionIndex(index);
    
    //集合转数组
    Object[] a = c.toArray();
    //集合长度
    int numNew = a.length;
    //如果是空集合,则返回false
    if (numNew == 0)
        return false;
    //定义前置/继任节点
    Node<E> pred, succ;
    //如果指定的位置是尾部(index==size)
    //无论当前链表是不是空的,只要index==size,就是往尾部插入元素
    if (index == size) {
        //继任节点为null
        succ = null;
        //前置节点就是最后一个节点
        pred = last;
    } else {
        //根据下标找出节点作为继任节点
        succ = node(index);
        //设置前置节点
        pred = succ.prev;
        //相当于在指定位置把当前链表断开
    }
    //遍历集合元素进行插入(修改指针)
    for (Object o : a) {
        @SuppressWarnings("unchecked") E e = (E) o;
        Node<E> newNode = new Node<>(pred, e, null);
        if (pred == null)
            first = newNode;
        else
            pred.next = newNode;
        pred = newNode;
    }
    //如果没有继任节点
    if (succ == null) {
        last = pred;
    } else {
        pred.next = succ;
        succ.prev = pred;
    }
    //修改大小
    size += numNew;
    //修改操作计数
    modCount++;
    return true;
}

这里的addAll添加一个集合的元素操作,整体逻辑还是比较清晰的,包含了指定集合c的非空判断,插入位置判断,断开链表,修改引用,后续判断和修改计数。

功能方法

了解了一些基础之后,那就该上大菜了。

接下来阅读,平时我们用的比较频繁的一些功能方法的源码。

还是老生常谈,对于这种集合框架来说,常用方法无外乎增/删/改/查。

另外,由于LinkedList不仅实现了List接口,还实现了Deque双端队列接口,所以也提供了队列相关方法。

add

ArrayList一样,LinkedList的添加也分为几类

  • 尾部添加单个元素
  • 指定位置添加单个元素
  • 尾部添加集合元素
  • 指定位置添加集合元素
  • 首位添加

由于集合元素的添加,在上面构造函数章节已经提过,这里就不再赘述。

着重看一下单个元素的添加。

/**
 * 尾部添加元素,返回true
 *
 * <p>This method is equivalent to {@link #addLast}.
 *
 * @param e element to be appended to this list
 * @return {@code true} (as specified by {@link Collection#add})
 */
public boolean add(E e) {
    //调用linkLast,后续分析
    linkLast(e);
    return true;
}

/**
 * 指定位置添加元素
 *
 * @param index index at which the specified element is to be inserted
 * @param element element to be inserted
 * @throws IndexOutOfBoundsException {@inheritDoc}
 */
public void add(int index, E element) {
    //检查指针
    checkPositionIndex(index);
    //判断是不是从尾部添加
    if (index == size)
        linkLast(element);
    else
        //不是尾部添加的,调用linkBefore,后续分析
        linkBefore(element, node(index));
}

/**
 * 头部插入
 *
 * @param e the element to add
 */
public void addFirst(E e) {
    linkFirst(e);
}

/**
 * 尾部插入
 *
 * @param e the element to add
 */
public void addLast(E e) {
    linkLast(e);
}

方法都很简单,没有什么操作逻辑,可以看出来,是linkLast/linkFirst/linkBefore在提供实际实现。

/**
 * 作为首节点
 */
private void linkFirst(E e) {
    //取出当前首节点
    final Node<E> f = first;
    //创建新节点
    final Node<E> newNode = new Node<>(null, e, f);
    //用新节点替换首节点
    first = newNode;
    //如果原来的首节点不存在的话
    if (f == null)
        //当前只有一个节点,则首位节点都是同一个
        last = newNode;
    else
        //原来的首节点后移
        f.prev = newNode;
    //修改计数
    size++;
    modCount++;
}


/**
 * 作为尾节点
 */
void linkLast(E e) {
    //取出当前尾节点
    final Node<E> l = last;
    //根据给定元素创建新节点
    final Node<E> newNode = new Node<>(l, e, null);
    last = newNode;
    //判断原来的尾节点是否存在
    if (l == null)
        //与上面同理
        first = newNode;
    else
        //原来的尾节点前移
        l.next = newNode;
    //修改计数
    size++;
    modCount++;
}

/**
 * 在非null继任节点前插入
 */
void linkBefore(E e, Node<E> succ) {
    // assert succ != null;
    final Node<E> pred = succ.prev;
    final Node<E> newNode = new Node<>(pred, e, succ);
    //其实就是从指定节点断开连接,修改指针引用
    succ.prev = newNode;
    if (pred == null)
        first = newNode;
    else
        pred.next = newNode;
    size++;
    modCount++;
}

看完上面内容,大概也就能了解为什么LinkedList适合插入/删除节点了,因为插入操作对于LinkedList来说,不需要移动数据,只需要在指定位置修改指针引用即可,即,断开->插入->修改引用。

移除其实也是同样的道理,即,断开->移除->修改引用。

remove

移除分为以下几种

  • 根据下标移除
  • 根据对象移除
  • 移除头部(实现Deque接口的方法)
  • 移除尾部((实现Deque接口的方法)
  • 移除首个匹配的对象(实现Deque接口的方法)
  • 移除最后一个匹配的对象(实现Deque接口的方法)
/**
 * 根据下标移除元素,并移动相关指针
 *
 * @param index 要移除元素的下标
 * @return 返回删除元素的前一个元素
 * @throws IndexOutOfBoundsException {@inheritDoc}
 */
public E remove(int index) {
    //下标合法性判断
    checkElementIndex(index);
    //调用node进行节点查找之后调用unlink进行移除
    //后续分析这两个方法
    return unlink(node(index));
}

/**
 * 如果存在的话从list中移除第一个匹配的元素
 * 如果不存在,则list不改变
 * 
 * 更正式点说,是移除在低位匹配到的元素
 * 如下所示
 * <tt>(o==null?get(i)==null:o.equals(get(i)))</tt>
 * (假如元素存在).  
 * Returns {@code true} 如果列表存在元素 (等价理解,该链表被改变).
 *
 * @param o 要移除的元素
 * @return {@code true} 如果存在要移除的元素
 */
public boolean remove(Object o) {
    //先判断要移除的元素是不是null
    if (o == null) {
        //从首节点遍历查找
        for (Node<E> x = first; x != null; x = x.next) {
            if (x.item == null) {
                //匹配到null,在调用unlink移除(之后分析这个方法)
                unlink(x);
                return true;
            }
        }
    //要移除的元素不是 null
    } else {
        //仍然是遍历,不过比较方法换成equals
        for (Node<E> x = first; x != null; x = x.next) {
            if (o.equals(x.item)) {
                unlink(x);
                return true;
            }
        }
    }
    return false;
}


/**
 * 移除并返回首个元素
 *
 * @return 返回list首元素
 * @throws NoSuchElementException list为空时,抛异常
 */
public E removeFirst() {
    final Node<E> f = first;
    if (f == null)
        throw new NoSuchElementException();
    //调用unlinkFirst,后面和unlink一起分析
    return unlinkFirst(f);
}


/**
 * 移除并返回尾部元素
 *
 * @return 返回list尾元素
 * @throws NoSuchElementException list为空时,抛异常
 */
public E removeLast() {
    final Node<E> l = last;
    if (l == null)
        throw new NoSuchElementException();
    ////调用unlinkLast,后面和unlink一起分析
    return unlinkLast(l);
}

/**
 * 从list头部->尾部进行遍历,如果存在指定元素的话,则移除第一个匹配的元素,如果不存在,则list不改变
 *
 * @param o 要移除的元素
 * @return {@code true} 如果存在的话,返回true
 * @since 1.6
 */
public boolean removeFirstOccurrence(Object o) {
    //直接调用remove(o),因为remove(o)就是从头部遍历并移除第一个匹配的元素
    return remove(o);
}

/**
 * 从list尾部->头部进行遍历,如果存在指定元素的话,则移除第一个匹配的元素,如果不存在,则list不改变
 *
 * @param o 要移除的元素
 * @return {@code true} 如果存在的话,返回true
 * @since 1.6
 */
public boolean removeLastOccurrence(Object o) {
    //判断o是不是null,如果是null,则用==比较
    if (o == null) {
        //从尾部遍历
        for (Node<E> x = last; x != null; x = x.prev) {
            if (x.item == null) {
                //移除
                unlink(x);
                return true;
            }
        }
    } else {
        for (Node<E> x = last; x != null; x = x.prev) {
            if (o.equals(x.item)) {
                unlink(x);
                return true;
            }
        }
    }
    return false;
}

//上面这个方法,通过条件分支,循环在两个分支里都有,看似可以抽离循环,然后再循环内部判断o==null来精简代码。

//但是实际上,把o==null抽离出来循环之外,虽然多写了些代码,但是不用在每次循环中做两次判断,可以提供效率。

//如果有类似的场景,我们也可以参考这种写法。

好了,看完上面的remove类方法,遗留了几个实际实现nodeunlinkunlinkFirstunlinkLast未阅读,下面继续

/**
 * 返回非指定位置的非null节点
 */
Node<E> node(int index) {
    // assert isElementIndex(index);
    //判断下标在list的上游/下游
    //如果是上游的话,从头部进行查找
    if (index < (size >> 1)) {
        Node<E> x = first;
        for (int i = 0; i < index; i++)
            x = x.next;
        return x;
    
    //如果是下游,则从尾部查找    
    } else {
        Node<E> x = last;
        for (int i = size - 1; i > index; i--)
            x = x.prev;
        return x;
    }
}


/**
 * 移除非null节点x
 */
E unlink(Node<E> x) {
    // assert x != null;
    //取出元素待返回
    final E element = x.item;
    //取出x的前/后节点
    final Node<E> next = x.next;
    final Node<E> prev = x.prev;
    //如果前置节点不存在,则证明x是首节点
    if (prev == null) {
        //首节点指向x的后置节点
        first = next;
    } else {
        //如果x不是首节点
        //则将x的前置节点与后置节点相连
        prev.next = next;
        //x与前置节点断开
        x.prev = null;
    }
    
    //如果x的后置节点不存在,则证明x是尾节点
    if (next == null) {
        //尾节点指向x的前置节点
        last = prev;
    } else {
        //如果不是尾节点
        //则将x的尾首节点相连
        //修改引用
        next.prev = prev;
        //x与后置节点断开
        x.next = null;
    }
    //x的元素置null
    x.item = null;
    //size - 1
    size--;
    //操作计数 + 1
    modCount++;
    return element;
}


/**
 * 移除非null的f首节点.
 */
private E unlinkFirst(Node<E> f) {
    // assert f == first && f != null;
    //老规矩,取出f节点元素,待返回
    final E element = f.item;
    //取出f的后置节点
    final Node<E> next = f.next;
    //下面两个置null帮助垃圾收集器进行GC
    f.item = null;
    f.next = null; // help GC
    //首节点指向f的后置节点
    first = next;
    //如果后置节点不存在,证明list只有一个节点
    if (next == null)
        //置null
        last = null;
    else
        //list不只一个节点
        //后置节点变成首节点了,所以首节点的prev置null
        next.prev = null;
    //常规操作
    size--;
    modCount++;
    return element;
}


/**
 * 移除非null的l尾节点
 */
private E unlinkLast(Node<E> l) {
    // assert l == last && l != null;
    //取出元素待返回
    final E element = l.item;
    //取出l的前置节点
    final Node<E> prev = l.prev;
    //两个置null帮助垃圾收集器GC
    l.item = null;
    l.prev = null; // help GC
    //尾节点指向l的前置节点
    last = prev;
    //如果前置节点尾null,证明list只有一个节点
    if (prev == null)
        //首节点置null,此时list为空
        first = null;
    else
        //list不只一个节点
        //前置节点变成尾节点了,所以尾节点的后置为null
        prev.next = null;
    //常规操作
    size--;
    modCount++;
    return element;
}

set

设置/修改元素操作,需要提供下标和对应的元素,逻辑比较简单。

/**
 * 提供下标和元素来替换指定位置的元素
 *
 * @param index index of the element to replace
 * @param element element to be stored at the specified position
 * @return the element previously at the specified position
 * @throws IndexOutOfBoundsException {@inheritDoc}
 */
public E set(int index, E element) {
    //下标合法性判断
    checkElementIndex(index);
    //获取指定节点(在remove章节已经分析过该方法)
    Node<E> x = node(index);
    //进行替换
    E oldVal = x.item;
    x.item = element;
    return oldVal;
}

get

LinkedList的查找元素方式跟ArrayList有点不同,由于它是双端链表形式存储数据,所以额外提供了getFirstgetLast,方法实现都很简单,下面看一下这三个方法的实现

/**
 * 返回指定位置的元素
 *
 * @param index index of the element to return
 * @return the element at the specified position in this list
 * @throws IndexOutOfBoundsException {@inheritDoc}
 */
public E get(int index) {
    //这里其实也是调用node(index)方法进行定位
    checkElementIndex(index);
    return node(index).item;
}

/**
 * 返回list的首元素
 *
 * @return the first element in this list
 * @throws NoSuchElementException if this list is empty
 */
public E getFirst() {
    final Node<E> f = first;
    if (f == null)
        throw new NoSuchElementException();
    return f.item;
}

/**
 * 返回list的尾元素
 *
 * @return the last element in this list
 * @throws NoSuchElementException if this list is empty
 */
public E getLast() {
    final Node<E> l = last;
    if (l == null)
        throw new NoSuchElementException();
    return l.item;
}

contains

判断list是否包含指定元素,跟ArrayList一样,通过查找元素的下标后判断下标是否存在,来判断元素是否存在,不一样的是元素的查找方法。

LinkedList是双端链表实现,所以查找方法时从首节点进行遍历。

public boolean contains(Object o) {
    return indexOf(o) != -1;
}

public int indexOf(Object o) {
    int index = 0;
    if (o == null) {
        for (Node<E> x = first; x != null; x = x.next) {
            if (x.item == null)
                return index;
            index++;
        }
    } else {
        for (Node<E> x = first; x != null; x = x.next) {
            if (o.equals(x.item))
                return index;
            index++;
        }
    }
    return -1;
}

其他方法

其他还有一些方法,如clear以及Deque接口中定义的方法实现如offer等,避免篇幅过长,这里不一一分析,有兴趣的可自行阅读源码,实现逻辑都相对比较简单。

  • clear
  • offer
  • peek

只要了解了双端链表的基本原理,和常规操作,基本上内部的方法实现都能掌握得差不多,所以。

我犯懒了,就差不多分析到这里。

最后

惯例求点赞~~

3Q~

点击查看更多内容
1人点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消