在阅读LinkedList之前,建议还是将ArrayList 源码进行大概了解,其实向外部提供的方法以及设计思路是差不多的,只是LinkedList数据结构不是array了,而是一个链表,那我们接下来就一起学习下LinkedList的源码。
首先,我们从类图上来大体了解下 LinkedList 与 ArrayList的关系:
可以看出 LinkedList
不只是继承、实现了 List
的那套东西,还实现了 Dueue
这个双向队列, 什么是双向队列呢,就是在队列两端都可以“插入”、“获取” 数据。接下来我们还是以 ArrayList
的分析方式去分析LinkedList
。
基础成员
transient int size = 0; transient Link<E> voidLink; private static final class Link<ET> { ET data; Link<ET> previous, next; Link(ET o, Link<ET> p, Link<ET> n) { data = o; previous = p; next = n; } }
这是 LinkedList
最基础的组成部分, Link
这个静态内部类是LinkedList
中每一个单元的类型,数据是data
,previous
和next
分别指向链表的上游和下游;voidLink
可以理解是一个末尾节点,size
是整个list的节点数量。从开头就可以看出,LinkedList
的数据结构是一个双向链表,这样就避免了ArrayList
的自动扩容步骤,虽然在查找的时候占了些劣势(需要按照链表的指向挨个去找,不如数组直接指向角标快)。
构造方法
/** * Constructs a new empty instance of {@code LinkedList}. */ public LinkedList() { voidLink = new Link<E>(null, null, null); voidLink.previous = voidLink; voidLink.next = voidLink; } /** * Constructs a new instance of {@code LinkedList} that holds all of the * elements contained in the specified {@code collection}. The order of the * elements in this new {@code LinkedList} will be determined by the * iteration order of {@code collection}. * * @param collection * the collection of elements to add. */ public LinkedList(Collection<? extends E> collection) { this(); addAll(collection); }
LinkedList
提供了两个构造方法,第一个很简单,初始化voidLink
,并且将其上下游都指向自己;第二个构造方法传入一个 collection
,如果不细究源码细节,根据ArrayList
的经验,想必肯定是传入一个集合,将集合插入到这个空链表中。来举个例子,向一个空的 LinkedList
插入 new1 和 new2节点,我们用图示来表达下这个过程:
上图标注比较明显,对照代码不难理解;下边我们对源码,从添加、移除、获取等方面一一进行了解,能用图解尽量少说话:
添加
/** * Adds the specified object at the end of this {@code LinkedList}. * * @param object * the object to add. * @return always true */ @Override public boolean add(E object) { return addLastImpl(object); } /** * Adds the specified object at the end of this {@code LinkedList}. * * @param object * the object to add. */ public void addLast(E object) { addLastImpl(object); } private boolean addLastImpl(E object) { Link<E> oldLast = voidLink.previous; Link<E> newLink = new Link<E>(object, oldLast, voidLink); voidLink.previous = newLink; oldLast.next = newLink; size++; modCount++; return true; }
/** * Adds the specified object at the beginning of this {@code LinkedList}. * * @param object * the object to add. */ public void addFirst(E object) { addFirstImpl(object); } private boolean addFirstImpl(E object) { Link<E> oldFirst = voidLink.next; Link<E> newLink = new Link<E>(object, voidLink, oldFirst); voidLink.next = newLink; oldFirst.previous = newLink; size++; modCount++; return true; }
/** * Adds the objects in the specified Collection to this {@code LinkedList}. * * @param collection * the collection of objects. * @return {@code true} if this {@code LinkedList} is modified, * {@code false} otherwise. */ @Override public boolean addAll(Collection<? extends E> collection) { int adding = collection.size(); if (adding == 0) { return false; } Collection<? extends E> elements = (collection == this) ? new ArrayList<E>(collection) : collection; Link<E> previous = voidLink.previous; for (E e : elements) { Link<E> newLink = new Link<E>(e, previous, null); previous.next = newLink; previous = newLink; } previous.next = voidLink; voidLink.previous = previous; size += adding; modCount++; return true; }
这个方法就是构造方法里边调用的addAll(collection)
,这里的流程图在文章开始的时候就已经提到了,若有问题的同学可以回构造方法
那里再看看。
/** * Inserts the specified object into this {@code LinkedList} at the * specified location. The object is inserted before any previous element at * the specified location. If the location is equal to the size of this * {@code LinkedList}, the object is added at the end. * * @param location * the index at which to insert. * @param object * the object to add. * @throws IndexOutOfBoundsException * if {@code location < 0 || location > size()} */ @Override public void add(int location, E object) { if (location >= 0 && location <= size) { Link<E> link = voidLink; if (location < (size / 2)) { for (int i = 0; i <= location; i++) { link = link.next; } } else { for (int i = size; i > location; i--) { link = link.previous; } } Link<E> previous = link.previous; Link<E> newLink = new Link<E>(object, previous, link); previous.next = newLink; link.previous = newLink; size++; modCount++; } else { throw new IndexOutOfBoundsException(); } }
这个方法的有趣之处是参数中加了一个location
,最开始查找location位置的link单元时采用了简单的一种二分查找方式,之后将 含有object
元素的newLink
插入到该位置,public boolean addAll(int location, Collection<? extends E> collection)
同理,只是批量操作。由于有了 ArrayList 的基础和上边的举例讲解,这里就 不对 “获取”、“移除”、“序列化”等做详细讲解了,原理都是一样的,查找位置使用如上的二分查找,找到了就做一些响应的链表操作。
public boolean offer(E o) { return addLastImpl(o); } public E poll() { return size == 0 ? null : removeFirst(); } public E remove() { return removeFirstImpl(); } public E peek() { return peekFirstImpl(); } private E peekFirstImpl() { Link<E> first = voidLink.next; return first == voidLink ? null : first.data; } public E element() { return getFirstImpl(); } /** * {@inheritDoc} * * @see java.util.Deque#offerFirst(java.lang.Object) * @since 1.6 */ public boolean offerFirst(E e) { return addFirstImpl(e); } /** * {@inheritDoc} * * @see java.util.Deque#offerLast(java.lang.Object) * @since 1.6 */ public boolean offerLast(E e) { return addLastImpl(e); } /** * {@inheritDoc} * * @see java.util.Deque#peekFirst() * @since 1.6 */ public E peekFirst() { return peekFirstImpl(); } /** * {@inheritDoc} * * @see java.util.Deque#peekLast() * @since 1.6 */ public E peekLast() { Link<E> last = voidLink.previous; return (last == voidLink) ? null : last.data; } /** * {@inheritDoc} * * @see java.util.Deque#pollFirst() * @since 1.6 */ public E pollFirst() { return (size == 0) ? null : removeFirstImpl(); } /** * {@inheritDoc} * * @see java.util.Deque#pollLast() * @since 1.6 */ public E pollLast() { return (size == 0) ? null : removeLastImpl(); } /** * {@inheritDoc} * * @see java.util.Deque#pop() * @since 1.6 */ public E pop() { return removeFirstImpl(); } /** * {@inheritDoc} * * @see java.util.Deque#push(java.lang.Object) * @since 1.6 */ public void push(E e) { addFirstImpl(e); }
由于LinkedList
实现了 Deque
接口 (Deque
继承Queue
),上边这些方法就是具体针对Deque
接口的实现方式,反正我是感觉挺乱的,功能都一样,但也要提供好多方法。。。。。。。
迭代器
这个我还是很想说的,LinkedList
提供了两个获取iterator
的方法,分别是
@Override public ListIterator<E> listIterator(int location) { return new LinkIterator<E>(this, location); } public Iterator<E> descendingIterator() { return new <E>(this); }
从方法名上我们可以看出第一个是正序遍历,第二个是倒叙遍历,分别返回了ListIterator
和 ReverseLinkIterator
,这两个静态内部类的源码如下:
private static final class LinkIterator<ET> implements ListIterator<ET> { int pos, expectedModCount; final LinkedList<ET> list; Link<ET> link, lastLink; LinkIterator(LinkedList<ET> object, int location) { list = object; expectedModCount = list.modCount; if (location >= 0 && location <= list.size) { // pos ends up as -1 if list is empty, it ranges from -1 to // list.size - 1 // if link == voidLink then pos must == -1 link = list.voidLink; if (location < list.size / 2) { for (pos = -1; pos + 1 < location; pos++) { link = link.next; } } else { for (pos = list.size; pos >= location; pos--) { link = link.previous; } } } else { throw new IndexOutOfBoundsException(); } } public void add(ET object) { if (expectedModCount == list.modCount) { Link<ET> next = link.next; Link<ET> newLink = new Link<ET>(object, link, next); link.next = newLink; next.previous = newLink; link = newLink; lastLink = null; pos++; expectedModCount++; list.size++; list.modCount++; } else { throw new ConcurrentModificationException(); } } public boolean hasNext() { return link.next != list.voidLink; } public boolean hasPrevious() { return link != list.voidLink; } public ET next() { if (expectedModCount == list.modCount) { LinkedList.Link<ET> next = link.next; if (next != list.voidLink) { lastLink = link = next; pos++; return link.data; } throw new NoSuchElementException(); } throw new ConcurrentModificationException(); } public int nextIndex() { return pos + 1; } public ET previous() { if (expectedModCount == list.modCount) { if (link != list.voidLink) { lastLink = link; link = link.previous; pos--; return lastLink.data; } throw new NoSuchElementException(); } throw new ConcurrentModificationException(); } public int previousIndex() { return pos; } public void remove() { if (expectedModCount == list.modCount) { if (lastLink != null) { Link<ET> next = lastLink.next; Link<ET> previous = lastLink.previous; next.previous = previous; previous.next = next; if (lastLink == link) { pos--; } link = previous; lastLink = null; expectedModCount++; list.size--; list.modCount++; } else { throw new IllegalStateException(); } } else { throw new ConcurrentModificationException(); } } public void set(ET object) { if (expectedModCount == list.modCount) { if (lastLink != null) { lastLink.data = object; } else { throw new IllegalStateException(); } } else { throw new ConcurrentModificationException(); } } } /* * NOTES:descendingIterator is not fail-fast, according to the documentation * and test case. */ private class ReverseLinkIterator<ET> implements Iterator<ET> { private int expectedModCount; private final LinkedList<ET> list; private Link<ET> link; private boolean canRemove; ReverseLinkIterator(LinkedList<ET> linkedList) { list = linkedList; expectedModCount = list.modCount; link = list.voidLink; canRemove = false; } public boolean hasNext() { return link.previous != list.voidLink; } public ET next() { if (expectedModCount == list.modCount) { if (hasNext()) { link = link.previous; canRemove = true; return link.data; } throw new NoSuchElementException(); } throw new ConcurrentModificationException(); } public void remove() { if (expectedModCount == list.modCount) { if (canRemove) { Link<ET> next = link.previous; Link<ET> previous = link.next; next.next = previous; previous.previous = next; link = previous; list.size--; list.modCount++; expectedModCount++; canRemove = false; return; } throw new IllegalStateException(); } throw new ConcurrentModificationException(); } }
先来看ListIterator
这个内部类,expectedModCount == list.modCount
判断和ArrayList
一样,都是当iterator
创建好之后,看LinkedList
是否经过“添加”、“移除”等操作,expectedModCount
在iterator
初始化时赋值为modCount
,每次对iterator
的操作都会判断二者是否相同,如果直接对LinkedList
进行add
或者remove
操作,会导致modCount++
,此时如果再对iterator
操作时,expectedModCount
没变,就会抛出ConcurrentModificationException
异常;但ListIterator
比ArrayList
好的地方是不仅提供了remove
方法,还提供了add
方法,这样,使用iterator
对LinkedList
操作起码是单线程安全的。另外,需要注意的是,ReverseLinkIterator
没有提供add
方法,所以一定注意,使用同一个iterator
实例时,这个过程中不要对LinkedList
进行add
操作。
共同学习,写下你的评论
评论加载中...
作者其他优质文章