为了账号安全,请及时绑定邮箱和手机立即绑定

二叉树的常用算法

标签:
Java 算法 面试

节点访问的次序,忽略打印行为
如果将打印安排在同个数字第一次被访问时,即先序遍历
第二次即中序遍历
第三次即后序遍历
现二叉树的先序、中序、后序遍历,包括递归方式和非递归
方式
二叉树结构定义

public static class Node {
        public int value;
        public Node left;
        public Node right;

        public Node(int data) {
            this.value = data;
        }
    }
递归
先序遍历
   /**
     * 先序遍历
     *
     * @param head
     */
    public static void preOrderRecur(Node head) {
        if (head == null) {
            return;
        }
        System.out.print(head.value + " ");
        preOrderRecur(head.left);
        preOrderRecur(head.right);
    }
中序遍历
   /**
     * 中序遍历
     *
     * @param head
     */
    public static void inOrderRecur(Node head) {
        if (head == null) {
            return;
        }
        inOrderRecur(head.left);
        System.out.print(head.value + " ");
        in
后序遍历
   /**
     * 后序遍历
     *
     * @param head
     */
    public static void posOrderRecur(Node head) {
        if (head == null) {
            return;
        }
        posOrderRecur(head.left);
        posOrderRecur(head.right);
        System.out.print(head.value + " ");
    }
2 非递归
2.1 先序遍历非递归
public static void preOrderUnRecur(Node head) {
        System.out.print("pre-order: ");
        if (head != null) {
            //构造栈
            Stack<Node> stack =new Stack<>();
            //压栈以当前结点为头,变成先序的逆序
            stack.add(head);
            while (!stack.isEmpty()) {
                //弹栈
                head = stack.pop();
                System.out.print(head.value + " ");
                /**
                 * 有右孩子就先压,否则压左
                 */
                //右孩子非空时
                if (head.right != null) {
                    //压栈右孩子
                    stack.push(head.right);
                }
                //左孩子非空时
                if (head.left != null) {
                    //压栈左孩子
                    stack.push(head.left);
                }
            }
        }
        System.out.println();
    }
2.2 中序遍历非递归
   /**
     * 中序遍历的非递归版本
     *
     * @param head
     */
    public static void inOrderUnRecur(Node head) {
        System.out.print("in-order: ");
        if (head != null) {
            //构造栈
            Stack<Node> stack =new Stack<>();
            //当前结点为空,从栈弹一个打印,当前结点向右跑
            // 非空,则压栈,向左跑
            while (!stack.isEmpty() || head != null) {
                //会把当前结点的左孩子全都压栈!
                if (head != null) {
                    stack.push(head);
                    head = head.left;
                } else {
                    head = stack.pop();
                    System.out.print(head.value + " ");
                    head = head.right;
                }
            }
        }
        System.out.println();
    }

整棵树都被左边界分解,然后栈的逆序打印即可
再怎么解释都需要自己的代码理解!!!中序遍历非递归也是最难理解的!

2.3 后序遍历非递归

即要实现左右中,逆序中左右其实根据先序遍历非递归改变左右压栈顺序即可,然后该打印时不打印,而是放在辅助栈中,就成了左右中顺序,打印之!

   /**
     * 后序遍历的非递归版本1
     *
     * @param head
     */
    public static void posOrderUnRecur1(Node head) {
        System.out.print("pos-order: ");
        if (head != null) {
            Stack<Node> s1 =new Stack<>();
            //辅助栈
            Stack<Node> s2 =new Stack<>();
            s1.push(head);
            while (!s1.isEmpty()) {
                head = s1.pop();
                //打印时,不让其打印,而是放在辅助栈
                s2.push(head);
                //先压左
                if (head.left != null) {
                    s1.push(head.left);
                }
                //再压右
                if (head.right != null) {
                    s1.push(head.right);
                }
            }
            while (!s2.isEmpty()) {
                //最后打印辅助栈即可!
                System.out.print(s2.pop().value + " ");
            }
        }
        System.out.println();
    }
   /**
     * 后序遍历的非递归版本2
     * 
     * @param h
     */
    public static void posOrderUnRecur2(Node h) {
        System.out.print("pos-order: ");
        if (h != null) {
            Stack<Node> stack =new Stack<>();
            stack.push(h);
            Node c = null;
            while (!stack.isEmpty()) {
                c = stack.peek();
                if (c.left != null && h != c.left && h != c.right) {
                    stack.push(c.left);
                } else if (c.right != null && h != c.right) {
                    stack.push(c.right);
                } else {
                    System.out.print(stack.pop().value + " ");
                    h = c;
                }
            }
        }
        System.out.println();
    }
3 小结

无论递归非递归,本质都是使用了栈ADT,由于二叉树本身只有向下的路径,所以需要有支持回去的路径,栈即为天之骄子!!!二叉树整体是向下的,当遍历到某一结点时需要回去时,就是刚刚好逆序的栈ADT!

福利函数,打印正确的二叉树,用于验证

/**
 * @author Shusheng Shi
 */
public class PrintBinaryTree {

    public static class Node {
        public int value;
        public Node left;
        public Node right;

        public Node(int data) {
            this.value = data;
        }
    }

    public static void printTree(Node head) {
        System.out.println("Binary Tree:");
        printInOrder(head, 0, "H", 17);
        System.out.println();
    }

    public static void printInOrder(Node head, int height, String to, int len) {
        if (head == null) {
            return;
        }
        printInOrder(head.right, height + 1, "v", len);
        String val = to + head.value + to;
        int lenM = val.length();
        int lenL = (len - lenM) / 2;
        int lenR = len - lenM - lenL;
        val = getSpace(lenL) + val + getSpace(lenR);
        System.out.println(getSpace(height * len) + val);
        printInOrder(head.left, height + 1, "^", len);
    }

    public static String getSpace(int num) {
        String space = " ";
        StringBuffer buf = new StringBuffer("");
        for (int i = 0; i < num; i++) {
            buf.append(space);
        }
        return buf.toString();
    }

    public static void main(String[] args) {
        Node head = new Node(1);
        head.left = new Node(-222222222);
        head.right = new Node(3);
        head.left.left = new Node(Integer.MIN_VALUE);
        head.right.left = new Node(55555555);
        head.right.right = new Node(66);
        head.left.left.right = new Node(777);
        printTree(head);

        head = new Node(1);
        head.left = new Node(2);
        head.right = new Node(3);
        head.left.left = new Node(4);
        head.right.left = new Node(5);
        head.right.right = new Node(6);
        head.left.left.right = new Node(7);
        printTree(head);

        head = new Node(1);
        head.left = new Node(1);
        head.right = new Node(1);
        head.left.left = new Node(1);
        head.right.left = new Node(1);
        head.right.right = new Node(1);
        head.left.left.right = new Node(1);
        printTree(head);

    }

}
4 实战coding

在二叉树中找到一个节点的后继节点

现在有一种新的二叉树节点类型如下:

public class Node { 
     public int value; 
     public Node left;
     public Node right; 
     //可找到父结点,头结点指空
     public Node parent;
     public Node(int data) { 
          this.value = data; 
     }
}

该结构比普通二叉树节点结构多了一个指向父节点的parent指针。
假设有一 棵Node类型的节点组成的二叉树,树中每个节点的parent指针都正确地指向 自己的父节点,头节点的parent指向null。
只给一个在二叉树中的某个节点 node,请实现返回node的后继节点的函数。
在二叉树的中序遍历的序列中, node的下一个节点叫作node的后继节点
后继结点示例
前驱结点同理!不赘述

/**
 * @author Shusheng Shi
 */
public class SuccessorNode {

    public static class Node {
        public int value;
        public Node left;
        public Node right;
        public Node parent;

        public Node(int data) {
            this.value = data;
        }
    }

    /**
     * 如果是父节点的左孩子,就直接打印父节点
     * 否则找父节点的父节点,看父节点是否为其父的左孩子
     * 一路上行
     * @param node
     * @return
     */
    public static Node getSuccessorNode(Node node) {
        if (node == null) {
            return node;
        }
        //当前节点右孩子非空,说明有右子树
        if (node.right != null) {
            //直接找右子树的最左结点
            return getLeftMost(node.right);
            //当前节点右孩子为空
        } else {
            //取得其父结点
            Node parent = node.parent;
            //当前结点为其父左孩子时退出循环,可以简单认为整棵树为空节点的左孩子
            while (parent != null && parent.left != node) {
                //否则两指针同时一路上行
                node = parent;
                parent = node.parent;
            }
            return parent;
        }
    }

    /**
     * 给定结点子树的最左结点
     *
     * @param node 某棵子树的头部
     * @return
     */
    public static Node getLeftMost(Node node) {
        if (node == null) {
            return node;
        }
        while (node.left != null) {
            //一路左行即可
            node = node.left;
        }
        return node;
    }

    public static void main(String[] args) {
        Node head = new Node(6);
        head.parent = null;
        head.left = new Node(3);
        head.left.parent = head;
        head.left.left = new Node(1);
        head.left.left.parent = head.left;
        head.left.left.right = new Node(2);
        head.left.left.right.parent = head.left.left;
        head.left.right = new Node(4);
        head.left.right.parent = head.left;
        head.left.right.right = new Node(5);
        head.left.right.right.parent = head.left.right;
        head.right = new Node(9);
        head.right.parent = head;
        head.right.left = new Node(8);
        head.right.left.parent = head.right;
        head.right.left.left = new Node(7);
        head.right.left.left.parent = head.right.left;
        head.right.right = new Node(10);
        head.right.right.parent = head.right;

        Node test = head.left.left;
        System.out.println(test.value + " next: " + getSuccessorNode(test).value);
        test = head.left.left.right;
        System.out.println(test.value + " next: " + getSuccessorNode(test).value);
        test = head.left;
        System.out.println(test.value + " next: " + getSuccessorNode(test).value);
        test = head.left.right;
        System.out.println(test.value + " next: " + getSuccessorNode(test).value);
        test = head.left.right.right;
        System.out.println(test.value + " next: " + getSuccessorNode(test).value);
        test = head;
        System.out.println(test.value + " next: " + getSuccessorNode(test).value);
        test = head.right.left.left;
        System.out.println(test.value + " next: " + getSuccessorNode(test).value);
        test = head.right.left;
        System.out.println(test.value + " next: " + getSuccessorNode(test).value);
        test = head.right;
        System.out.println(test.value + " next: " + getSuccessorNode(test).value);
        test = head.right.right; // 10's next is null
        System.out.println(test.value + " next: " + getSuccessorNode(test));
    }

}
5序列化和反序列化

怎么序列化的就怎么反序列化
 按层序列化示意

import java.util.LinkedList;
import java.util.Queue;

/**
 * @author Shusheng Shi
 */
public class SerializeAndReconstructTree {

    public static class Node {
        public int value;
        public Node left;
        public Node right;

        public Node(int data) {
            this.value = data;
        }
    }

    public static String serialByPre(Node head) {
        if (head == null) {
            return "#!";
        }
        String res = head.value + "!";
        res += serialByPre(head.left);
        res += serialByPre(head.right);
        return res;
    }

    public static Node reconByPreString(String preStr) {
        String[] values = preStr.split("!");
        //加入队列,方便依次出队
        Queue<String> queue =new LinkedList<>();
        for (int i = 0; i != values.length; i++) {
            queue.offer(values[i]);
        }
        return reconPreOrder(queue);
    }

    /**
     * 用给定队列建树
     *
     * @param queue
     * @return
     */
    public static Node reconPreOrder(Queue<String> queue) {
        //出队一个
        String value = queue.poll();
        //空树
        if (value.equals("#")) {
            return null;
        }
        //非空时建立一个头结点,中-左-右顺序
        Node head = new Node(Integer.valueOf(value));
        //左子树递归
        head.left = reconPreOrder(queue);
        //右子树递归
        head.right = reconPreOrder(queue);
        return head;
    }

    /**
     * 按层序列化
     * 
     * @param head
     * @return
     */
    public static String serialByLevel(Node head) {
        if (head == null) {
            return "#!";
        }
        String res = head.value + "!";
        Queue<Node> queue = new LinkedList<Node>();
        queue.offer(head);
        while (!queue.isEmpty()) {
            head = queue.poll();
            if (head.left != null) {
                res += head.left.value + "!";
                queue.offer(head.left);
            } else {
                res += "#!";
            }
            if (head.right != null) {
                res += head.right.value + "!";
                queue.offer(head.right);
            } else {
                res += "#!";
            }
        }
        return res;
    }

    public static Node reconByLevelString(String levelStr) {
        String[] values = levelStr.split("!");
        int index = 0;
        Node head = generateNodeByString(values[index++]);
        Queue<Node> queue = new LinkedList<Node>();
        if (head != null) {
            queue.offer(head);
        }
        Node node = null;
        while (!queue.isEmpty()) {
            node = queue.poll();
            node.left = generateNodeByString(values[index++]);
            node.right = generateNodeByString(values[index++]);
            if (node.left != null) {
                queue.offer(node.left);
            }
            if (node.right != null) {
                queue.offer(node.right);
            }
        }
        return head;
    }

    public static Node generateNodeByString(String val) {
        if (val.equals("#")) {
            return null;
        }
        return new Node(Integer.valueOf(val));
    }

    public static void printTree(Node head) {
        System.out.println("Binary Tree:");
        printInOrder(head, 0, "H", 17);
        System.out.println();
    }

    public static void printInOrder(Node head, int height, String to, int len) {
        if (head == null) {
            return;
        }
        printInOrder(head.right, height + 1, "v", len);
        String val = to + head.value + to;
        int lenM = val.length();
        int lenL = (len - lenM) / 2;
        int lenR = len - lenM - lenL;
        val = getSpace(lenL) + val + getSpace(lenR);
        System.out.println(getSpace(height * len) + val);
        printInOrder(head.left, height + 1, "^", len);
    }

    public static String getSpace(int num) {
        String space = " ";
        StringBuffer buf = new StringBuffer("");
        for (int i = 0; i < num; i++) {
            buf.append(space);
        }
        return buf.toString();
    }

    public static void main(String[] args) {
        Node head = null;
        printTree(head);

        String pre = serialByPre(head);
        System.out.println("serialize tree by pre-order: " + pre);
        head = reconByPreString(pre);
        System.out.print("reconstruct tree by pre-order, ");
        printTree(head);

        String level = serialByLevel(head);
        System.out.println("serialize tree by level: " + level);
        head = reconByLevelString(level);
        System.out.print("reconstruct tree by level, ");
        printTree(head);

        System.out.println("====================================");

        head = new Node(1);
        printTree(head);

        pre = serialByPre(head);
        System.out.println("serialize tree by pre-order: " + pre);
        head = reconByPreString(pre);
        System.out.print("reconstruct tree by pre-order, ");
        printTree(head);

        level = serialByLevel(head);
        System.out.println("serialize tree by level: " + level);
        head = reconByLevelString(level);
        System.out.print("reconstruct tree by level, ");
        printTree(head);

        System.out.println("====================================");

        head = new Node(1);
        head.left = new Node(2);
        head.right = new Node(3);
        head.left.left = new Node(4);
        head.right.right = new Node(5);
        printTree(head);

        pre = serialByPre(head);
        System.out.println("serialize tree by pre-order: " + pre);
        head = reconByPreString(pre);
        System.out.print("reconstruct tree by pre-order, ");
        printTree(head);

        level = serialByLevel(head);
        System.out.println("serialize tree by level: " + level);
        head = reconByLevelString(level);
        System.out.print("reconstruct tree by level, ");
        printTree(head);

        System.out.println("====================================");

        head = new Node(100);
        head.left = new Node(21);
        head.left.left = new Node(37);
        head.right = new Node(-42);
        head.right.left = new Node(0);
        head.right.right = new Node(666);
        printTree(head);

        pre = serialByPre(head);
        System.out.println("serialize tree by pre-order: " + pre);
        head = reconByPreString(pre);
        System.out.print("reconstruct tree by pre-order, ");
        printTree(head);

        level = serialByLevel(head);
        System.out.println("serialize tree by level: " + level);
        head = reconByLevelString(level);
        System.out.print("reconstruct tree by level, ");
        printTree(head);

        System.out.println("====================================");

    }
}
判断一棵二叉树是否是平衡二叉树

平衡二叉树(Self-balancing binary search tree)
又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树,同时,平衡二叉树必定是二叉搜索树,反之则不一定。平衡二叉树的常用实现方法有红黑树AVL替罪羊树Treap伸展树等。

解题思路

以每个结点为头的整棵树都要是平衡的
左子树平衡?
右子树平衡?
都平衡情况下,左子树高度?
右子树高度?
判断差值

package com.sss.class04;

/**
 * @author Shusheng Shi
 */
public class IsBalancedTree {

    public static class Node {
        public int value;
        public Node left;
        public Node right;

        public Node(int data) {
            this.value = data;
        }
    }

    public static boolean isBalance(Node head) {
        boolean[] res = new boolean[1];
        res[0] = true;
        getHeight(head, 1, res);
        return res[0];
    }

    public static int getHeight(Node head, int level, boolean[] res) {
        if (head == null) {
            return level;
        }
        int lH = getHeight(head.left, level + 1, res);
        if (!res[0]) {
            return level;
        }
        int rH = getHeight(head.right, level + 1, res);
        if (!res[0]) {
            return level;
        }
        if (Math.abs(lH - rH) > 1) {
            res[0] = false;
        }
        return Math.max(lH, rH);
    }

    public static void main(String[] args) {
        Node head = new Node(1);
        head.left = new Node(2);
        head.right = new Node(3);
        head.left.left = new Node(4);
        head.left.right = new Node(5);
        head.right.left = new Node(6);
        head.right.right = new Node(7);

        System.out.println(isBalance(head));

    }

}
判断一棵树是否是搜索二叉树、判断一棵树是否是完全二叉树
  • 搜索二叉树(Binary Search Tree)(又:二叉搜索树,二叉排序树)
    它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树
  • 完全二叉树(Complete Binary Tree)
    若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。
    /**
     * 是否为完全二叉树
     *
     * @param head
     * @return
     */
    public static boolean isCBT(Node head) {
        if (head == null) {
            return true;
        }
        Queue<Node> queue =new LinkedList<>();
        boolean leaf = false;
        Node left,right;
        //开始时,将头加入队列
        queue.offer(head);
        while (!queue.isEmpty()) {
            //然后在队列中出队当前节点
            head = queue.poll();
            //拿到左右孩子
            left = head.left;
            right = head.right;
            //开启了叶节点的阶段 且 左/右孩子非空
            if ((leaf && (left != null || right != null)) || (left == null && right != null)) {
                return false;
            }
            if (left != null) {
                queue.offer(left);
            }
            if (right != null) {
                queue.offer(right);
            } else {
                leaf = true;
            }
        }
        return true;
    }

    二叉树层序遍历

点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消