为了账号安全,请及时绑定邮箱和手机立即绑定

Udacity-Machine Learning纳米学位-学习笔记1

标签:
机器学习

课程地址

Category:

Machine Learning
   Artificial Intelligence
   Data Science
   Basic Statics

Tips

  • stick to your schedule

  • be relentless in searching the answer on your own

  • be an active member in the community


16/5/20

Welcome

Machine Learning

What is Machine Learning ?
  • Processing the data & understanding the data

  • Then react intelligently to it

  • Build models to represent Data

  • Lots of different things, really next natural evolution

Compare with traditional programming ?
  • Traditional: Build the decision making directly into the programming

  • ML: Build an agent who can look at a bunch of images over time and recognize

Application ?
  • Almost every field : Predict, Identify, Maximize

Objectives ?
  • When to use them, How

  • What to apply to solve it, How to evaluate


16/5/21

Artificial Intelligence & Data Science

2 Fields:
  • Artificial Intelligence

  • Data Science

Artificial Intelligence

  • To create machines that are as smart as humans

  • 6 Characteristics

  • 5 Big problems to solve

  • 4 Schools of AI

  • 3 Fundamental Process of knowledge based AI

  • Fundamental Tech: Bayesian Rule, Bayesian Network

Data Science

What is Data Scientist ?
  • Can do math, and programming.

  • Ask the right questions and solve them.

  • Communicate, Report, and Present.

What does Data Scientist Do ?
  • Data

  • Model

  • Understand patterns

Machine Learning

3 Parts:
  • Supervised Learning:
    Labeled Data to get the label for new data

  • Unsupervised Learning:
    Input->Observe the relationship among them->Identify

  • Reinforcement Learning:
    **Learn from delayed award **

What to learn:
  • Parameters

  • Structure

  • Hidden concepts

What for:
  • Predict

  • Diagnose

  • Summarization

Output:
  • Classification

  • Regression


16/5/22

Basic Statics Concepts

Basic Statics

Measure of Central Tendency
  • mode, median, average

Variability of Data
  • Range= Max-Min

  • Quartile: Q1, IQR=Q3-Q1

  • Outlier: <Q1-1.5IQR or >Q3+1.5IQR

  • Variance: average( sum( (Xi-Xbar)^2 ) )

  • Standard Deviation: squared root of Variance

点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消