为了账号安全,请及时绑定邮箱和手机立即绑定

【LEETCODE】模拟面试-120- Triangle

题目:

https://leetcode.com/problems/triangle/

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

题意:

Given a triangle, and this problem is to find the minimum sum from top to down layer, at each layer, for each point, it can only sum with its adjacent point.

分析:

Since that when we move to the next layer, the sum depends on the previous layer's choice, and each choice maybe called more than once, so it's better to use Dynamic Programming to deal with it.

If we solve it from top to down, it may require to build 2D matrix.
So we can try from down to top.

  • Suppose the triangle has n layers.

  • We firstly initiate dp as equal to the last layer of triangle, so dp has 1*n dimension.

  • Then we move from (n-1)th layer upward, for each movement, we will compare and store the minimum choice for each point in this layer. That is:

  • At (n-1)th layer, for each i in this layer, find min(triangle[i]+dp[i], triangle[i]+dp[i+1]), then refresh dp[i] with the result.

  • So dp[i] denote that, till current time, when we move from down to current layer, the minimum so far for each point i in this layer.

图例

[Python]

class Solution(object):
    def minimumTotal(self, triangle):
        """
        :type triangle: List[List[int]]
        :rtype: int
        """
        
        n = len(triangle)
        
        dp = triangle[n-1]        
        for i in range(n-2,-1,-1):            for j in range(i+1):
                dp[j] = min( dp[j], dp[j+1] ) + triangle[i][j]        
        return dp[0]
点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消