为了账号安全,请及时绑定邮箱和手机立即绑定

【LEETCODE】模拟面试-357- Count Numbers with Unique Digits

标签:
机器学习

题目:

https://leetcode.com/problems/count-numbers-with-unique-digits/

Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n.

Example:
Given n = 2, return 91. (The answer should be the total numbers in the range of 0 ≤ x < 100, excluding [11,22,33,44,55,66,77,88,99])

Hint:

A direct way is to use the backtracking approach.
Backtracking should contains three states which are (the current number, number of steps to get that number and a bitmask which represent which number is marked as visited so far in the current number). Start with state (0,0,0) and count all valid number till we reach number of steps equals to 10n.
This problem can also be solved using a dynamic programming approach and some knowledge of combinatorics.
Let f(k) = count of numbers with unique digits with length equals k.
f(1) = 10, ..., f(k) = 9 * 9 * 8 * ... (9 - k + 2) [The first factor is 9 because a number cannot start with 0].

分析:

This question is to get a count.
Given n, count the numbers which belong to [0, 10^n) and do not contain duplicate digits.

Firstly, this n must be less or equal to 10, since there are 0~9 10 unique digits.

When n=1, count=10. (0~9)
When n=2, there are 2 classes of numbers, one is 1-digit, another is 2-digit.
Under this n, when i==1, count=10.
when i==2, count=9*(8+1).
when i==3, count=9*9*(7+1)
...
when i==n, count=9*9*8..*(9-n+2)

So here we can use Dynamic Programming.
Let dp[] to be an array with length=1*(n+1).
dp[k] means if a number is of k digits, how many kinds of combinations can satisfy the requirement.
For n, the number may have k=1~n situations.
For k, the choices on the (i)th position depends on the (i-1)th and before.
Finally, we will sum the dp from dp[0]~dp[n], and this is the result.

Python

class Solution(object):
    def countNumbersWithUniqueDigits(self, n):
        """
        :type n: int
        :rtype: int
        """
      
        n = min(n, 10)
        dp = [1] + [9]*n        
        for k in xrange(2, n+1):            for i in xrange(9, 9-k+1, -1):
                dp[k] *= i        
        return sum(dp)


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消