为了账号安全,请及时绑定邮箱和手机立即绑定

「半监督学习」笔记(四)

标签:
算法


\begin{aligned} &W = (w_1, \, \cdots, w_m)\\ &F = (f(x_1), \cdots, f(x_m)) = (f_1, \cdots, f_m) \end{aligned}
则有

\begin{al

igned} FWF^T &= (\sum_{i=1}^m f_i(W)_{1,i},\cdots, \sum_{i=1}^m f_j(W)_{m,i})F^T \\ &= (Fw_1, \cdots, Fw_m)F^T \\ &= \sum_{i=1}^m Fw_if_i^T \\ &= \sum_{i,j=1}^m (W)_{i,j}f_i f_j^T \end{aligned}

故而
\begin{aligned} Tr(FWF^T) &= \sum_{i,j=1}^m Tr(f_i f_j^T)(W)_{i,j} \\ &= {\displaystyle\sum_{i=1}^{m}\sum_{j=1}^m}f(x_i)^Tf(x_j)(W)_{ij} \end{aligned}

 d_j = {\displaystyle \sum_{j=1}^m (W)_{ij} = ||w_j||_1},则记
D = diag(d_1, \cdots, d_m),故而
{\displaystyle\sum_{i=1}^{m}\sum_{j=1}^m}(W)_{ij}||f(x_i)||^2 = Tr(FDF^T)

因而
E(f) = Tr(F(D-W)F^T)


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消