为了账号安全,请及时绑定邮箱和手机立即绑定

「半监督学习」笔记(三)

标签:
算法

子空间 V = L(x_1, \,x_2,\,\cdots,\,x_m)) 上定义一个泛函 f
\begin{aligned} f: V \rightarrow {\mathbb R^C}, && \text{$C$ 是类别个数} \end{aligned}
则可以定义 f 的能量函数为
\begin{aligned} E(f) &= \frac{1}{2} {\displaystyle\sum_{i=1}^{m}\sum_{j=1}^m (W)_{ij} ||f(x_i) - f(x_j)||^2}\\ &= \frac{1}{2}{\displaystyle\sum_{i=1}^{m}\sum_{j=1}^m (W)_{ij}( ||f(x_i)||^2 - 2 f(x_i)^Tf(x_j) + ||f(x_j)||^2)}\\ &= {\displaystyle\sum_{i=1}^{m}\sum_{j=1}^m}(W)_{ij}||f(x_i)||^2 - {\displaystyle\sum_{i=1}^{m}\sum_{j=1}^m}f(x_i)^Tf(x_j)(W)_{ij} & \text{$i$, $j$ 的对称性} \end{aligned}


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消