为了账号安全,请及时绑定邮箱和手机立即绑定

「半监督学习」笔记(二)

标签:
算法


给定 D_l = \{(x_1,y_1), \,(x_2,y_2),\,\cdots,\,(x_l,y_l)\}  D_u = \{(x_{l+1},y_{l+1}), \,(x_{l+2},y_{l+2}),\,\cdots,\,(x_{l+u},y_{l+u})\}l \ll ul+u=m.我们先基于 D = D_l \bigcup D_u 构建一个图 G = (V, E),其中节点集 V = \{(x_1,y_1), (x_2,y_2),\cdots,(x_{l+u},y_{l+u})\},边集的亲和矩阵(affinity matrix,或称为相似度矩阵),常基于高斯函数定义为
(W)_{ij} = \begin{cases} exp(\frac{-||x_i - x_j||_2^2}{2\sigma^2}) &\text{if $i \neq j$} \\ 0 &\text{其他} \end{cases}
其中 i,\,j \in \{1, \,2, \,\cdots, \,m\}; \sigma > 0 是用户指定的高斯带宽参数。



点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消