为了账号安全,请及时绑定邮箱和手机立即绑定

详解循环神经网络(Recurrent Neural Network)

今天的学习资料是这篇文章,写的非常详细,有理论有代码,本文是补充一些小细节,可以二者结合看效果更好:
https://zybuluo.com/hanbingtao/note/541458

在文末有关于 RNN 的文章汇总,之前写的大多是概览式的模型结构,公式,和一些应用,今天主要放在训练算法的推导。

本文结构:

  1. 模型

  2. 训练算法

  3. 基于 RNN 的语言模型例子

  4. 代码实现


1. 模型

  • 和全连接网络的区别

  • 更细致到向量级的连接图

  • 为什么循环神经网络可以往前看任意多个输入值

循环神经网络种类繁多,今天只看最基本的循环神经网络,这个基础攻克下来,理解拓展形式也不是问题。

首先看它和全连接网络的区别:

下图是一个全连接网络:
它的隐藏层的值只取决于输入的 x

而 RNN 的隐藏层的值 s 不仅仅取决于当前这次的输入 x,还取决于上一次隐藏层的值 s:
这个过程画成简图是这个样子:

其中,t 是时刻, x 是输入层, s 是隐藏层, o 是输出层,矩阵 W 就是隐藏层上一次的值作为这一次的输入的权重。

上面的简图还不能够说明细节,来看一下更细致到向量级的连接图:

Elman network

Elman and Jordan networks are also known as "simple recurrent networks" (SRN).

其中各变量含义:


输出层是一个全连接层,它的每个节点都和隐藏层的每个节点相连,
隐藏层是循环层。

图来自wiki:https://en.wikipedia.org/wiki/Recurrent_neural_network#Gated_recurrent_unit

为什么循环神经网络可以往前看任意多个输入值呢?

来看下面的公式,即 RNN 的输出层 o 和 隐藏层 s 的计算方法:


如果反复把式 2 带入到式 1,将得到:


这就是原因。


2. 训练算法

RNN 的训练算法为:BPTT

BPTT 的基本原理和 BP 算法是一样的,同样是三步:


  1. 前向计算每个神经元的输出值;


    1. 反向计算每个神经元的误差项值,它是误差函数E对神经元j的加权输入的偏导数;


    1. 计算每个权重的梯度。

    最后再用随机梯度下降算法更新权重。

    BP 算法的详细推导可以看这篇:
    手写,纯享版反向传播算法公式推导
    http://www.jianshu.com/p/9e217cfd8a49

    下面详细解析各步骤:

    1. 前向计算

    计算隐藏层 S 以及它的矩阵形式:
    注意下图中,各变量的维度,标在右下角了,
    s 的上标代表时刻,下标代表这个向量的第几个元素。

    1

    2. 误差项的计算

    BTPP 算法就是将第 l 层 t 时刻的误差值沿两个方向传播:

    • 一个方向是,传递到上一层网络,这部分只和权重矩阵 U 有关;(就相当于把全连接网络旋转90度来看)

    • 另一个是方向是,沿时间线传递到初始时刻,这部分只和权重矩阵 W 有关。

    如下图所示:

    所以,就是要求这两个方向的误差项的公式:

    学习资料中式 3 就是将误差项沿时间反向传播的算法,求到了任意时刻k的误差项

    下面是具体的推导过程:
    主要就是用了 链锁反应 和 Jacobian 矩阵

    2

    其中 s 和 net 的关系如下,有助于理解求导公式:


    学习资料中式 4 就是将误差项传递到上一层算法:

    这一步和普通的全连接层的算法是完全一样的,具体的推导过程如下:

    3

    其中 net 的 l 层 和 l-1 层的关系如下:


    BPTT 算法的最后一步:计算每个权重的梯度
    学习资料中式 6 就是计算循环层权重矩阵 W 的梯度的公式:

    具体的推导过程如下:

    4


    和权重矩阵 W 的梯度计算方式一样,可以得到误差函数在 t 时刻对权重矩阵 U 的梯度:


    3. 基于 RNN 的语言模型例子

    我们要用 RNN 做这样一件事情,每输入一个词,循环神经网络就输出截止到目前为止,下一个最可能的词,如下图所示:

    首先,要把词表达为向量的形式:

    • 建立一个包含所有词的词典,每个词在词典里面有一个唯一的编号。

    • 任意一个词都可以用一个N维的one-hot向量来表示。

    这种向量化方法,我们就得到了一个高维、稀疏的向量,这之后需要使用一些降维方法,将高维的稀疏向量转变为低维的稠密向量。

    为了输出 “最可能” 的词,所以需要计算词典中每个词是当前词的下一个词的概率,再选择概率最大的那一个。

    因此,神经网络的输出向量也是一个 N 维向量,向量中的每个元素对应着词典中相应的词是下一个词的概率:

    为了让神经网络输出概率,就要用到 softmax 层作为输出层。

    softmax函数的定义:
    因为和概率的特征是一样的,所以可以把它们看做是概率。


    例:

    计算过程为:


    含义就是:
    模型预测下一个词是词典中第一个词的概率是 0.03,是词典中第二个词的概率是 0.09。

    语言模型如何训练?

    把语料转换成语言模型的训练数据集,即对输入 x 和标签 y 进行向量化,y 也是一个 one-hot 向量

    接下来,对概率进行建模,一般用交叉熵误差函数作为优化目标。

    交叉熵误差函数,其定义如下:

    用上面例子就是:


    计算过程如下:


    有了模型,优化目标,梯度表达式,就可以用梯度下降算法进行训练了。


    4. 代码实现

    RNN 的 Python 实现代码可以在学习资料中找到。


    关于神经网络,写过的文章汇总:

    Neural NetworksAreCool
    理论


    神经网络的前世


    神经网络 之 感知器的概念和实现


    神经网络 之 线性单元


    手写,纯享版反向传播算法公式推导


    常用激活函数比较


    什么是神经网络
    模型


    图解何为CNN


    用 Tensorflow 建立 CNN

    图解RNN


    CS224d-Day 5: RNN快速入门


    用深度神经网络处理NER命名实体识别问题


    用 RNN 训练语言模型生成文本


    RNN与机器翻译


    用 Recursive Neural Networks 得到分析树


    RNN的高级应用
    TensorFlow


    一文学会用 Tensorflow 搭建神经网络


    用 Tensorflow 建立 CNN


    对比学习用 Keras 搭建 CNN RNN 等常用神经网络


    点击查看更多内容
    TA 点赞

    若觉得本文不错,就分享一下吧!

    评论

    作者其他优质文章

    正在加载中
    • 推荐
    • 评论
    • 收藏
    • 共同学习,写下你的评论
    感谢您的支持,我会继续努力的~
    扫码打赏,你说多少就多少
    赞赏金额会直接到老师账户
    支付方式
    打开微信扫一扫,即可进行扫码打赏哦
    今天注册有机会得

    100积分直接送

    付费专栏免费学

    大额优惠券免费领

    立即参与 放弃机会
    意见反馈 帮助中心 APP下载
    官方微信

    举报

    0/150
    提交
    取消