本文结构:
Doc2Vec 有什么用
两种实现方法
用 Gensim 训练 Doc2Vec
Doc2Vec 或者叫做 paragraph2vec, sentence embeddings,是一种非监督式算法,可以获得 sentences/paragraphs/documents 的向量表达,是 word2vec 的拓展。
学出来的向量可以通过计算距离来找 sentences/paragraphs/documents 之间的相似性,
或者进一步可以给文档打标签。
例如首先是找到一个向量可以代表文档的意思,
然后可以将向量投入到监督式机器学习算法中得到文档的标签,
例如在**情感分析 **sentiment analysis 任务中,标签可以是 "negative", "neutral","positive"。
2013 年 Mikolov 提出了 word2vec 来学习单词的向量表示,
主要有两种方法,cbow ( continuous bag of words) 和 skip-gram ,
一个是用语境来预测目标单词,另一个是用中心单词来预测语境。
既然可以将 word 表示成向量形式,那么句子/段落/文档是否也可以只用一个向量表示?
一种方式是可以先得到 word 的向量表示,然后用一个简单的平均来代表文档。
另外就是 Mikolov 在 2014 提出的 Doc2Vec。
Doc2Vec 也有两种方法来实现。
dbow (distributed bag of words)
gensim 实现:
model = gensim.models.Doc2Vec(documents,dm = 0, alpha=0.1, size= 20, min_alpha=0.025)
dm (distributed memory)
gensim 实现:
model = gensim.models.Doc2Vec(documents,dm = 1, alpha=0.1, size= 20, min_alpha=0.025)
二者在 gensim 实现时的区别是 dm = 0 还是 1.
Doc2Vec 的目的是获得文档的一个固定长度的向量表达。
数据:多个文档,以及它们的标签,可以用标题作为标签。
影响模型准确率的因素:语料的大小,文档的数量,越多越高;文档的相似性,越相似越好。
这里要用到 Gensim 的 Doc2Vec:
import gensim LabeledSentence = gensim.models.doc2vec.LabeledSentence
先把所有文档的路径存进一个 array 中,docLabels:
from os import listdirfrom os.path import isfile, join docLabels = [] docLabels = [f for f in listdir("myDirPath") if f.endswith('.txt')]
把所有文档的内容存入到 data 中:
data = []for doc in docLabels: data.append(open(“myDirPath/” + doc, ‘r’)
接下来准备数据,
如果是用句子集合来训练模型,则可以用:
class LabeledLineSentence(object): def __init__(self, filename): self.filename = filename def __iter__(self): for uid, line in enumerate(open(filename)): yield LabeledSentence(words=line.split(), labels=[‘SENT_%s’ % uid])
如果是用文档集合来训练模型,则用:
class LabeledLineSentence(object): def __init__(self, doc_list, labels_list): self.labels_list = labels_list self.doc_list = doc_list def __iter__(self): for idx, doc in enumerate(self.doc_list): yield LabeledSentence(words=doc.split(),labels=[self.labels_list[idx]])
在 gensim 中模型是以单词为单位训练的,所以不管是句子还是文档都分解成单词。
训练模型:
将 data, docLabels 传入到 LabeledLineSentence 中,
训练 Doc2Vec,并保存模型:
it = LabeledLineSentence(data, docLabels) model = gensim.models.Doc2Vec(size=300, window=10, min_count=5, workers=11,alpha=0.025, min_alpha=0.025) model.build_vocab(it)for epoch in range(10): model.train(it) model.alpha -= 0.002 # decrease the learning rate model.min_alpha = model.alpha # fix the learning rate, no deca model.train(it) model.save(“doc2vec.model”)
测试模型:
Gensim 中有内置的 most_similar:
print model.most_similar(“documentFileNameInYourDataFolder”)
输出向量:
model[“documentFileNameInYourDataFolder”]
得到向量后,可以计算相似性,输入给机器学习算法做情感分类等任务了
共同学习,写下你的评论
评论加载中...
作者其他优质文章