下载数据:
http://www.gutenberg.org/cache/epub/5200/pg5200.txt
将开头和结尾的一些信息去掉,使得开头如下:
One morning, when Gregor Samsa woke from troubled dreams, he found himself transformed in his bed into a horrible vermin.
结尾如下:
And, as if in confirmation of their new dreams and good intentions, as soon as they reached their destination Grete was the first to get up and stretch out her young body.
保存为:metamorphosis_clean.txt
加载数据:
filename = 'metamorphosis_clean.txt'file = open(filename, 'rt') text = file.read() file.close()
1. 用空格分隔:
words = text.split()print(words[:100])# ['One', 'morning,', 'when', 'Gregor', 'Samsa', 'woke', 'from', 'troubled', 'dreams,', 'he', ...]
2. 用 re 分隔单词:
和上一种方法的区别是,'armour-like' 被识别成两个词 'armour', 'like','"What's' 变成了 'What', 's'
import re words = re.split(r'\W+', text) print(words[:100])
3. 用空格分隔并去掉标点:
string 里的 string.punctuation 可以知道都有哪些算是标点符号,
maketrans() 可以建立一个空的映射表,其中 string.punctuation 是要被去掉的列表,
translate() 可以将一个字符串集映射到另一个集,
也就是 'armour-like' 被识别成 'armourlike','"What's' 被识别成 'Whats'
words = text.split()import string table = str.maketrans('', '', string.punctuation) stripped = [w.translate(table) for w in words] print(stripped[:100])
4. 都变成小写:
当然大写可以用 word.upper()。
words = [word.lower() for word in words]print(words[:100])
安装 NLTK:
nltk.download() 后弹出对话框,选择 all,点击 download
import nltk nltk.download()
5. 分成句子:
用到 sent_tokenize()
from nltk import sent_tokenize sentences = sent_tokenize(text) print(sentences[0])
6. 分成单词:
用到 word_tokenize,
这次 'armour-like' 还是 'armour-like','"What's' 就是 'What', "'s",
from nltk.tokenize import word_tokenize tokens = word_tokenize(text) print(tokens[:100])
7. 过滤标点:
只保留 alphabetic,其他的滤掉,
这样的话 “armour-like” 和 “‘s” 也被滤掉了。
from nltk.tokenize import word_tokenize tokens = word_tokenize(text) words = [word for word in tokens if word.isalpha()] print(tokens[:100])
8. 过滤掉没有深刻含义的 stop words:
在 stopwords.words('english') 可以查看这样的词表。
from nltk.corpus import stopwords stop_words = set(stopwords.words('english')) words = [w for w in words if not w in stop_words] print(words[:100])
9. 转化成词根:
运行 porter.stem(word) 之后,单词会变成相应的词根形式,例如 “fishing,” “fished,” “fisher” 会变成 “fish”
from nltk.tokenize import word_tokenize tokens = word_tokenize(text)from nltk.stem.porter import PorterStemmer porter = PorterStemmer() stemmed = [porter.stem(word) for word in tokens] print(stemmed[:100])
共同学习,写下你的评论
评论加载中...
作者其他优质文章