为了账号安全,请及时绑定邮箱和手机立即绑定

cs230 深度学习 Lecture 2 编程作业

标签:
人工智能

(注:原标题:cs230 深度学习 Lecture 2 编程作业: Logistic Regression with a Neural Network mindset)

本文结构:

  1. 将 Logistic 表达为 神经网络 的形式

  2. 构建模型

  • A. 构建模型

  • B. 梯度更新求模型参数

  • C. 进行预测

  • a. 初始化参数:w 和 b 为 0

  • b. 前向传播:计算当前的损失

  • c. 反向更新:计算当前的梯度

  1. 导入包

  2. 获得数据

  3. 并进行预处理: 格式转换,归一化

  4. 整合模型:

  5. 绘制学习曲线


1. 将 Logistic 表达为 神经网络 的形式

本文的目的是要用神经网络的思想实现 Logistic Regression,输入一张图片就可以判断该图片是不是猫。

那么什么是神经网络呢?
可以看我之前写的这篇文章:

什么是神经网络

其中一个很重要的概念,神经元:

再来看 Logistic 模型的表达:

那么把 Logistic 表达为 神经网络 的形式为:

(关于 Logistic 可以看这两篇文章:
Logistic Regression 为什么用极大似然函数
Logistic regression 为什么用 sigmoid ?

接下来就可以构建模型:


2. 构建模型

我们的目的是学习www 和bbb 使 cost functionJJJ 达到最小,

方法就是:

  • 通过前向传播 (forward propagation) 计算当前的损失,

  • 通过反向传播 (backward propagation) 计算当前的梯度,

  • 再用梯度下降法对参数进行优化更新 (gradient descent)

关于反向传播可以看这两篇文章:
手写,纯享版反向传播算法公式推导

构建模型,训练模型,并进行预测,包含下面几步:

  1. 导入包

  2. 获得数据

  3. 并进行预处理: 格式转换,归一化

  4. 整合模型:

  • a. 初始化参数:w 和 b 为 0

  • b. 前向传播:计算当前的损失

  • c. 反向更新:计算当前的梯度

  • A. 构建模型

  • B. 梯度更新求模型参数

  • C. 进行预测

  • 绘制学习曲线

  • 下面进入详细代码:


    1. 导入包

    引入需要的 packages,
    其中,
    h5py 是 python 中用于处理 H5 文件的接口,
    PIL 和 scipy 在本文是用自己的图片来测试训练好的模型,
    load_dataset 读取数据

    import numpy as npimport matplotlib.pyplot as pltimport h5pyimport scipyfrom PIL import Imagefrom scipy import ndimagefrom lr_utils import load_dataset
    
    %matplotlib inline

    其中 lr_utils.py 如下,是对 H5 文件进行解析 :

    #lr_utils.py  import numpy as np  
    import h5py  
              
    def load_dataset():  
        train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")  
        train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features  
        train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels  
      
        test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")  
        test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features  
        test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels  
      
        classes = np.array(test_dataset["list_classes"][:]) # the list of classes  
          
        train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))  
        test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))  
          
        return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes

    2. 获得数据

    # Loading the data (cat/non-cat)train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()

    可以看一下图片的例子:

    # Example of a pictureindex = 25
    plt.imshow(train_set_x_orig[index])print ("y = " + str(train_set_y[:,index]) + ", it's a '" + classes[np.squeeze(train_set_y[:,index])].decode("utf-8") +  "' picture.")


    3. 进行预处理: 格式转换,归一化

    这时需要获得下面几个值:

    • m_train (训练样本数量)

    • m_test (测试样本数量)

    • num_px (训练数据集的长和宽)

    ### START CODE HERE ### (≈ 3 lines of code)### STA m_train = train_set_y.shape[1]
    m_test = test_set_y.shape[1]
    num_px = train_set_x_orig.shape[1]### END CODE HERE ###print ("Number of training examples: m_train = " + str(m_train))print ("Number of testing examples: m_test = " + str(m_test))print ("Height/Width of each image: num_px = " + str(num_px))print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")print ("train_set_x shape: " + str(train_set_x_orig.shape))print ("train_set_y shape: " + str(train_set_y.shape))print ("test_set_x shape: " + str(test_set_x_orig.shape))print ("test_set_y shape: " + str(test_set_y.shape))

    图像需要进行 reshape,原本是 (num_px, num_px, 3),要扁平化为一个向量 (num_px * num_px * 3, 1)
    将 (a, b, c, d) 维的矩阵转换为 (b∗c∗d, a) 可以用: X_flatten = X.reshape(X.shape[0], -1).T

    # Reshape the training and test examples### START CODE HERE ### (≈ 2 lines of code)train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
    test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T### END CODE HERE ###print ("train_set_x_flatten shape: " + str(train_set_x_flatten.shape))print ("train_set_y shape: " + str(train_set_y.shape))print ("test_set_x_flatten shape: " + str(test_set_x_flatten.shape))print ("test_set_y shape: " + str(test_set_y.shape))print ("sanity check after reshaping: " + str(train_set_x_flatten[0:5,0]))

    预处理还常常包括对数据进行中心化和标准化,图像数据的话,可以简单除以最大的像素值:

    train_set_x = train_set_x_flatten / 255.
    test_set_x = test_set_x_flatten / 255.

    4. 整合模型

    - A. 构建模型
        - a. 初始化参数:w 和 b 为 0
        - b. 前向传播:计算当前的损失
        - c. 反向更新:计算当前的梯度
    - B. 梯度更新求模型参数
    - C. 进行预测

    先来 A. 构建模型

    按照前面提到的三步:
    初始化参数:w 和 b 为 0
    前向传播:计算当前的损失
    反向更新:计算当前的梯度

    首先需要一个辅助函数 sigmoid( w^T x + b)

    # GRADED FUNCTION: sigmoiddef sigmoid(z):
        """
        Compute the sigmoid of z
    
        Arguments:
        x -- A scalar or numpy array of any size.
    
        Return:
        s -- sigmoid(z)
        """
    
        ### START CODE HERE ### (≈ 1 line of code)
        s = 1 / (1 + np.exp(-z))    ### END CODE HERE ###
        
        return s

    a. 初始化参数:w 和 b 为 0

    # GRADED FUNCTION: initialize_with_zerosdef initialize_with_zeros(dim):
        """
        This function creates a vector of zeros of shape (dim, 1) for w and initializes b to 0.
        
        Argument:
        dim -- size of the w vector we want (or number of parameters in this case)
        
        Returns:
        w -- initialized vector of shape (dim, 1)
        b -- initialized scalar (corresponds to the bias)
        """
        
        ### START CODE HERE ### (≈ 1 line of code)
        w = np.zeros(shape=(dim, 1))
        b = 0
        ### END CODE HERE ###
    
        assert(w.shape == (dim, 1))    assert(isinstance(b, float) or isinstance(b, int))    
        return w, b

    b. 前向传播:计算当前的损失
    c. 反向更新:计算当前的梯度

    # GRADED FUNCTION: propagatedef propagate(w, b, X, Y):
        """
        Implement the cost function and its gradient for the propagation explained above
    
        Arguments:
        w -- weights, a numpy array of size (num_px * num_px * 3, 1)
        b -- bias, a scalar
        X -- data of size (num_px * num_px * 3, number of examples)
        Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)
    
        Return:
        cost -- negative log-likelihood cost for logistic regression
        dw -- gradient of the loss with respect to w, thus same shape as w
        db -- gradient of the loss with respect to b, thus same shape as b
        
        Tips:
        - Write your code step by step for the propagation
        """
        
        m = X.shape[1]    
        # FORWARD PROPAGATION (FROM X TO COST)
        ### START CODE HERE ### (≈ 2 lines of code)
        A = sigmoid(np.dot(w.T, X) + b)  # compute activation
        cost = (- 1 / m) * np.sum(Y * np.log(A) + (1 - Y) * (np.log(1 - A)))  # compute cost
        ### END CODE HERE ###
        
        # BACKWARD PROPAGATION (TO FIND GRAD)
        ### START CODE HERE ### (≈ 2 lines of code)
        dw = (1 / m) * np.dot(X, (A - Y).T)
        db = (1 / m) * np.sum(A - Y)    ### END CODE HERE ###
    
        assert(dw.shape == w.shape)    assert(db.dtype == float)
        cost = np.squeeze(cost)    assert(cost.shape == ())
        
        grads = {"dw": dw,             "db": db}    
        return grads, cost

    B. 梯度更新求模型参数

    这一步 optimize 的目的是要学习www 和bbb 使 cost functionJJJ 达到最小,
    用到的方法是梯度下降  θ=θα dθ\theta = \theta - \alpha \text{ } d\thetaθ=θ−α dθ,

    # GRADED FUNCTION: optimizedef optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
        """
        This function optimizes w and b by running a gradient descent algorithm
        
        Arguments:
        w -- weights, a numpy array of size (num_px * num_px * 3, 1)
        b -- bias, a scalar
        X -- data of shape (num_px * num_px * 3, number of examples)
        Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
        num_iterations -- number of iterations of the optimization loop
        learning_rate -- learning rate of the gradient descent update rule
        print_cost -- True to print the loss every 100 steps
        
        Returns:
        params -- dictionary containing the weights w and bias b
        grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
        costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.
        
        Tips:
        You basically need to write down two steps and iterate through them:
            1) Calculate the cost and the gradient for the current parameters. Use propagate().
            2) Update the parameters using gradient descent rule for w and b.
        """
        
        costs = []    
        for i in range(num_iterations):        
            
            # Cost and gradient calculation (≈ 1-4 lines of code)
            ### START CODE HERE ### 
            grads, cost = propagate(w, b, X, Y)        ### END CODE HERE ###
            
            # Retrieve derivatives from grads
            dw = grads["dw"]
            db = grads["db"]        
            # update rule (≈ 2 lines of code)
            ### START CODE HERE ###
            w = w - learning_rate * dw  # need to broadcast
            b = b - learning_rate * db        ### END CODE HERE ###
            
            # Record the costs
            if i % 100 == 0:
                costs.append(cost)        
            # Print the cost every 100 training examples
            if print_cost and i % 100 == 0:            print ("Cost after iteration %i: %f" % (i, cost))
        
        params = {"w": w,              "b": b}
        
        grads = {"dw": dw,             "db": db}    
        return params, grads, costs

    C. 进行预测

    # GRADED FUNCTION: predictdef predict(w, b, X):
        '''
        Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)
        
        Arguments:
        w -- weights, a numpy array of size (num_px * num_px * 3, 1)
        b -- bias, a scalar
        X -- data of size (num_px * num_px * 3, number of examples)
        
        Returns:
        Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
        '''
        
        m = X.shape[1]
        Y_prediction = np.zeros((1, m))
        w = w.reshape(X.shape[0], 1)    
        # Compute vector "A" predicting the probabilities of a cat being present in the picture
        ### START CODE HERE ### (≈ 1 line of code)
        A = sigmoid(np.dot(w.T, X) + b)    ### END CODE HERE ###
        
        for i in range(A.shape[1]):        # Convert probabilities a[0,i] to actual predictions p[0,i]
            ### START CODE HERE ### (≈ 4 lines of code)
            Y_prediction[0, i] = 1 if A[0, i] > 0.5 else 0
            ### END CODE HERE ###
        
        assert(Y_prediction.shape == (1, m))    
        return Y_prediction

    下面为整合的逻辑回归模型:

    将参数初始化,优化求参,预测整合在一起,

    输入为 训练集,测试集,迭代次数,学习速率,是否打印中间损失
    打印 test 和 train 集的预测准确率
    返回的 d 含有 参数 w,b,还有 test train 集上面的预测值,

    # GRADED FUNCTION: modeldef model(X_train, Y_train, X_test, Y_test, num_iterations=2000, learning_rate=0.5, print_cost=False):
        """
        Builds the logistic regression model by calling the function you've implemented previously
        
        Arguments:
        X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
        Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
        X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
        Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
        num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
        learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
        print_cost -- Set to true to print the cost every 100 iterations
        
        Returns:
        d -- dictionary containing information about the model.
        """
        
        ### START CODE HERE ###
        # initialize parameters with zeros (≈ 1 line of code)
        w, b = initialize_with_zeros(X_train.shape[0])    # Gradient descent (≈ 1 line of code)
        parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)    
        # Retrieve parameters w and b from dictionary "parameters"
        w = parameters["w"]
        b = parameters["b"]    
        # Predict test/train set examples (≈ 2 lines of code)
        Y_prediction_test = predict(w, b, X_test)
        Y_prediction_train = predict(w, b, X_train)    ### END CODE HERE ###
    
        # Print train/test Errors
        print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
        print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
    
        
        d = {"costs": costs,         "Y_prediction_test": Y_prediction_test, 
             "Y_prediction_train" : Y_prediction_train, 
             "w" : w, 
             "b" : b,         "learning_rate" : learning_rate,         "num_iterations": num_iterations}    
        return d

    下面代码进行模型训练:

    d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)

    结果:

    Cost after iteration 0: 0.693147Cost after iteration 100: 0.584508Cost after iteration 200: 0.466949Cost after iteration 300: 0.376007Cost after iteration 400: 0.331463Cost after iteration 500: 0.303273Cost after iteration 600: 0.279880Cost after iteration 700: 0.260042Cost after iteration 800: 0.242941Cost after iteration 900: 0.228004Cost after iteration 1000: 0.214820Cost after iteration 1100: 0.203078Cost after iteration 1200: 0.192544Cost after iteration 1300: 0.183033Cost after iteration 1400: 0.174399Cost after iteration 1500: 0.166521Cost after iteration 1600: 0.159305Cost after iteration 1700: 0.152667Cost after iteration 1800: 0.146542Cost after iteration 1900: 0.140872train accuracy: 99.04306220095694 %test accuracy: 70.0 %

    得到模型后可以看指定 index 所代表图片的预测值:

    # Example of a picture that was wrongly classified.# Exampl index = 5
    plt.imshow(test_set_x[:,index].reshape((num_px, num_px, 3)))print ("y = " + str(test_set_y[0, index]) + ", you predicted that it is a \"" + classes[d["Y_prediction_test"][0, index]].decode("utf-8") +  "\" picture.")


    5. 绘制学习曲线

    # Plot learning curve (with costs)# Plot l costs = np.squeeze(d['costs'])
    plt.plot(costs)
    plt.ylabel('cost')
    plt.xlabel('iterations (per hundreds)')
    plt.title("Learning rate =" + str(d["learning_rate"]))
    plt.show()

    可以看出 costs 是在下降的,如果增加迭代次数,那么训练数据的准确率会进一步提高,但是测试数据集的准确率可能会明显下降,这就是由于过拟合造成的。

    还可以对比下不同学习率对应下的学习效果:

    learning_rates = [0.01, 0.001, 0.0001]
    models = {}for i in learning_rates:    print ("learning rate is: " + str(i))
        models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)    print ('\n' + "-------------------------------------------------------" + '\n')for i in learning_rates:
        plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))
    
    plt.ylabel('cost')
    plt.xlabel('iterations')
    
    legend = plt.legend(loc='upper center', shadow=True)
    frame = legend.get_frame()
    frame.set_facecolor('0.90')
    plt.show()

    当学习率过大 (例 0.01) 时,costs 出现上下震荡,甚至可能偏离,不过这里 0.01 最终幸运地收敛到了一个比较好的值。

    点击查看更多内容
    TA 点赞

    若觉得本文不错,就分享一下吧!

    评论

    作者其他优质文章

    正在加载中
    • 推荐
    • 评论
    • 收藏
    • 共同学习,写下你的评论
    感谢您的支持,我会继续努力的~
    扫码打赏,你说多少就多少
    赞赏金额会直接到老师账户
    支付方式
    打开微信扫一扫,即可进行扫码打赏哦
    今天注册有机会得

    100积分直接送

    付费专栏免费学

    大额优惠券免费领

    立即参与 放弃机会
    意见反馈 帮助中心 APP下载
    官方微信

    举报

    0/150
    提交
    取消