为了账号安全,请及时绑定邮箱和手机立即绑定

Golang并发模型

标签:
Go

控制并发有三种种经典的方式,一种是通过channel通知实现并发控制 一种是WaitGroup,另外一种就是Context。

1. 使用最基本通过channel通知实现并发控制

无缓冲通道

无缓冲的通道指的是通道的大小为0,也就是说,这种类型的通道在接收前没有能力保存任何值,它要求发送 goroutine 和接收 goroutine 同时准备好,才可以完成发送和接收操作。

从上面无缓冲的通道定义来看,发送 goroutine 和接收 gouroutine 必须是同步的,同时准备后,如果没有同时准备好的话,先执行的操作就会阻塞等待,直到另一个相对应的操作准备好为止。这种无缓冲的通道我们也称之为同步通道。

正式通过无缓冲通道来实现多 goroutine 并发控制

func main() {
    ch := make(chan struct{})    go func() {
        fmt.Println("do something..")
        time.Sleep(time.Second * 1)
        ch <- struct{}{}
    }()

    <-ch

    fmt.Println("I am finished")
}

当主 goroutine 运行到 <-ch 接受 channel 的值的时候,如果该  channel 中没有数据,就会一直阻塞等待,直到有值。 这样就可以简单实现并发控制

2. 通过sync包中的WaitGroup实现并发控制

sync 包中,提供了 WaitGroup ,它会等待它收集的所有 goroutine 任务全部完成。在WaitGroup里主要有三个方法

  • Add, 可以添加或减少 goroutine的数量

  • Done, 相当于Add(-1)

  • Wait, 执行后会堵塞主线程,直到WaitGroup 里的值减至0

在主 goroutineAdd(delta int) 索要等待goroutine 的数量。在每一个 goroutine 完成后 Done() 表示这一个goroutine 已经完成,当所有的 goroutine 都完成后,在主 goroutineWaitGroup 返回返回。

func main(){    var wg sync.WaitGroup    var urls = []string{        "http://www.golang.org/",        "http://www.google.com/",        "http://www.somestupidname.com/",
    }    for _, url := range urls {
        wg.Add(1)        go func(url string) {            defer wg.Done()
            http.Get(url)
        }(url)
    }
    wg.Wait()
}

但是在Golang官网中,有这么一句话

  • A WaitGroup must not be copied after first use.

翻译够来过来就是,在 WaitGroup 第一次使用后,不能被拷贝,因为会出现一下问题

func main() {
    wg := sync.WaitGroup{}    for i := 0; i < 5; i++ {
        wg.Add(1)        go func(wg sync.WaitGroup, i int) {
            log.Printf("i:%d", i)
            wg.Done()
        }(wg, i)
    }
    wg.Wait()
    log.Println("exit")
}

运行结果如下

2009/11/10 23:00:00 i:4
2009/11/10 23:00:00 i:0
2009/11/10 23:00:00 i:1
2009/11/10 23:00:00 i:2
2009/11/10 23:00:00 i:3
fatal error: all goroutines are asleep - deadlock!

goroutine 1 [semacquire]:
sync.runtime_Semacquire(0x1040a13c, 0x44bc)
    /usr/local/go/src/runtime/sema.go:47 +0x40
sync.(*WaitGroup).Wait(0x1040a130, 0x121460)
    /usr/local/go/src/sync/waitgroup.go:131 +0x80
main.main()
    /tmp/sandbox894380819/main.go:19 +0x120

它提示我所有的 goroutine 都已经睡眠了,出现了死锁。这是因为 wg 给拷贝传递到了 goroutine 中,导致只有 Add 操作,其实 Done操作是在 wg 的副本执行的。因此 Wait 就死锁了。

  • 改正方法一:
    将匿名函数中 wg 的传入类型改为 *sync.WaitGrou,这样就能引用到正确的WaitGroup了。

  • 改正方法二:
    将匿名函数中的 wg 的传入参数去掉,因为Go支持闭包类型,在匿名函数中可以直接使用外面的 wg 变量

go 中五种引用类型有 slice, channel, function, map, interface

interface是Go语言中最成功的设计之一,空的interface可以被当作“鸭子”类型使用,它使得Go这样的静态语言拥有了一定的动态性,但却又不损失静态语言在类型安全方面拥有的编译时检查的优势。依赖于接口而不是实现,优先使用组合而不是继承,这是程序抽象的基本原则。但是长久以来以C++为代表的“面向对象”语言曲解了这些原则,让人们走入了误区。为什么要将方法和数据绑死?为什么要有多重继承这么变态的设计?面向对象中最强调的应该是对象间的消息传递,却为什么被演绎成了封装继承和多态。面向对象是否实现程序程序抽象的合理途径,又或者是因为它存在我们就认为它合理了。历史原因,中间出现了太多的错误。不管怎么样,Go的interface给我们打开了一扇新的窗。

3. 在Go 1.7 以后引进的强大的Context上下文,实现并发控制

3.1 简介

在一些简单场景下使用 channelWaitGroup 已经足够了,但是当面临一些复杂多变的网络并发场景下 channelWaitGroup 显得有些力不从心了。比如一个网络请求 Request,每个 Request 都需要开启一个 goroutine 做一些事情,这些 goroutine 又可能会开启其他的 goroutine,比如数据库和RPC服务。所以我们需要一种可以跟踪 goroutine 的方案,才可以达到控制他们的目的,这就是Go语言为我们提供的 Context,称之为上下文非常贴切,它就是goroutine 的上下文。它是包括一个程序的运行环境、现场和快照等。每个程序要运行时,都需要知道当前程序的运行状态,通常Go 将这些封装在一个 Context 里,再将它传给要执行的 goroutine

context 包主要是用来处理多个 goroutine 之间共享数据,及多个 goroutine 的管理。

3.2 package context

context 包的核心是 struct Context,接口声明如下:

// A Context carries a deadline, cancelation signal, and request-scoped values// across API boundaries. Its methods are safe for simultaneous use by multiple// goroutines.type Context interface {    // Done returns a channel that is closed when this `Context` is canceled
    // or times out.
    Done() <-chan struct{}    // Err indicates why this Context was canceled, after the Done channel
    // is closed.
    Err() error    // Deadline returns the time when this Context will be canceled, if any.
    Deadline() (deadline time.Time, ok bool)    // Value returns the value associated with key or nil if none.
    Value(key interface{}) interface{}
}
  • Done() 返回一个只能接受数据的channel类型,当该context关闭或者超时时间到了的时候,该channel就会有一个取消信号

  • Err()Done() 之后,返回context 取消的原因。

  • Deadline() 设置该context cancel的时间点

  • Value() 方法允许 Context 对象携带request作用域的数据,该数据必须是线程安全的。

Context 对象是线程安全的,你可以把一个 Context 对象传递给任意个数的 gorotuine,对它执行 取消 操作时,所有 goroutine 都会接收到取消信号。

一个 Context 不能拥有 Cancel 方法,同时我们也只能 Done channel 接收数据。
背后的原因是一致的:接收取消信号的函数和发送信号的函数通常不是一个。
一个典型的场景是:父操作为子操作操作启动 goroutine,子操作也就不能取消父操作。

3.3 继承 context

context 包提供了一些函数,协助用户从现有的 Context 对象创建新的 Context 对象。
这些 Context 对象形成一棵树:当一个 Context 对象被取消时,继承自它的所有 Context 都会被取消。

Background 是所有 Context 对象树的根,它不能被取消。它的声明如下:

// Background returns an empty Context. It is never canceled, has no deadline,// and has no values. Background is typically used in main, init, and tests,// and as the top-level `Context` for incoming requests.func Background() Context

WithCancelWithTimeout 函数 会返回继承的 Context 对象, 这些对象可以比它们的父 Context 更早地取消

当请求处理函数返回时,与该请求关联的 Context 会被取消。 当使用多个副本发送请求时,可以使用 WithCancel 取消多余的请求。 WithTimeout 在设置对后端服务器请求超时时间时非常有用。 下面是这三个函数的声明:

// WithCancel returns a copy of parent whose Done channel is closed as soon as// parent.Done is closed or cancel is called.func WithCancel(parent Context) (ctx Context, cancel CancelFunc)// A CancelFunc cancels a Context.type CancelFunc func()// WithTimeout returns a copy of parent whose Done channel is closed as soon as// parent.Done is closed, cancel is called, or timeout elapses. The new// Context's Deadline is the sooner of now+timeout and the parent's deadline, if// any. If the timer is still running, the cancel function releases its// resources.func WithTimeout(parent Context, timeout time.Duration) (Context, CancelFunc)

WithValue 函数能够将请求作用域的数据与 Context 对象建立关系。声明如下:

// WithValue returns a copy of parent whose Value method returns val for key.func WithValue(parent Context, key interface{}, val interface{}) Context

3.4 context例子

当然,想要知道 Context 包是如何工作的,最好的方法是看一个例子。

package mainimport (    "context"
    "fmt"
    "sync"
    "time")type Message struct {
    netId int
    Data  string}type ServerConn struct {
    sendCh   chan Message
    handleCh chan Message
    wg       *sync.WaitGroup
    ctx      context.Context
    cancel   context.CancelFunc
    netId    int}func main() {

    conn := &ServerConn{
        sendCh:   make(chan Message),
        handleCh: make(chan Message),
        wg:       &sync.WaitGroup{},
        netId:    100,
    }

    conn.ctx, conn.cancel = context.WithCancel(context.WithValue(context.Background(), "key", conn.netId))
    loopers := []func(*ServerConn, *sync.WaitGroup){readLoop, writeLoop, handleLoop}    for _, looper := range loopers {
        conn.wg.Add(1)        go looper(conn, conn.wg)
    }    go func() {
        time.Sleep(time.Second * 3)
        conn.cancel()
    }()

    conn.wg.Wait()

}func readLoop(c *ServerConn, wg *sync.WaitGroup) {

    netId, _ := c.ctx.Value("key").(int)
    handlerCh := c.handleCh
    ctx, _ := context.WithCancel(c.ctx)
    cDone := ctx.Done()    defer wg.Done()    for {
        time.Sleep(time.Second * 1)        select {        case <-cDone:
            fmt.Println("readLoop close")            return
        default:
            handlerCh <- Message{netId, "Hello world"}
        }
    }
}func handleLoop(c *ServerConn, wg *sync.WaitGroup) {
    handlerCh := c.handleCh
    sendCh := c.sendCh
    ctx, _ := context.WithCancel(c.ctx)
    cDone := ctx.Done()    defer wg.Done()    for {        select {        case handleData, ok := <-handlerCh:            if ok {
                handleData.netId++
                handleData.Data = "I am whole world"
                sendCh <- handleData
            }        case <-cDone:
            fmt.Println("handleLoop close")            return
        }

    }
}func writeLoop(c *ServerConn, wg *sync.WaitGroup) {
    sendCh := c.sendCh
    ctx, _ := context.WithCancel(c.ctx)
    cDone := ctx.Done()    defer wg.Done()    for {        select {        case sendData, ok := <-sendCh:            if ok {
                fmt.Println(sendData)
            }        case <-cDone:
            fmt.Println("writeLoop close")            return
        }
    }
}

在上面的例子中,�模仿了Golang后台程序主要业务流程, 当一个TCP连接到来时通过启动三个goroutine来分别处理收发和处理数据。而这三个goroutine的是并发运行的,通过channelsync.WaitGroupcontext控制数据的处理。

在�每一个循环中产生一个goroutine,每一个goroutine中都传入context,在每个goroutine中通过传入ctx创建一个Context,并且通过select一直监控该Context的运行情况,当在父Context退出的时候,代码中并没有�明显调用子ContextCancel函数,但是分析结果,子Context还是被正确合理的关闭了,这是因为,所有基于这个Context或者衍生的子Context都会收到通知,这时就可以进行清理操作了,最终释放goroutine,这就优雅的解决了goroutine启动后不可控的问题。

下面是运行结果:

Screen Shot 2017-09-17 at 19.29.44.png

3.5 Context 使用原则

  • 不要把Context放在结构体中,要以参数的方式传递

  • Context作为参数的函数方法,应该把Context作为第一个参数,放在第一位。

  • 给一个函数方法传递Context的时候,不要传递nil,如果不知道传递什么,就使用context.TODO

  • ContextValue相关方法应该传递必须的数据,不要什么数据都使用这个传递

  • Context是线程安全的,可以放心的在多个goroutine中传递



作者:wiseAaron
链接:https://www.jianshu.com/p/6032f2db6be5

点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消