为了账号安全,请及时绑定邮箱和手机立即绑定

动态规划——搬寝室(hdu1421)

标签:
算法

题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1421

题目描述:

搬寝室是很累的,xhd深有体会.时间追述2006年7月9号,那天xhd迫于无奈要从27号楼搬到3号楼,因为10号要封楼了.看着寝室里的n件物品,xhd开始发呆,因为n是一个小于2000的整数,实在是太多了,于是xhd决定随便搬2*k件过去就行了.但还是会很累,因为2*k也不小是一个不大于n的整数.幸运的是xhd根据多年的搬东西的经验发现每搬一次的疲劳度是和左右手的物品的重量差的平方成正比(这里补充一句,xhd每次搬两件东西,左手一件右手一件).例如xhd左手拿重量为3的物品,右手拿重量为6的物品,则他搬完这次的疲劳度为(6-3)^2 = 9.现在可怜的xhd希望知道搬完这2*k件物品后的最佳状态是怎样的(也就是最低的疲劳度)


解题思路:

dp记录前i个物品取j对所对应的值   

我们假设开始第i对的时候取a[i]和a[i-1]物品,即dp[i][j]=dp[i-2][j-1]+(a[i]-a[i-1])*(a[i]-a[i-1]);  

那么状态转移方程为dp[i][j]=fmin(dp[i-1][j],dp[i][j]);


#include<stdio.h>#include<string.h>	int dp[2100][1050];//前i个物品取j对 int fmin(int a,int b){	return a<b?a:b;}int main(){	int a[2100];	int i,j,t,n,k;	while(~scanf("%d%d",&n,&k))	{	memset(dp,0,sizeof(dp));for(i=1;i<=n;i++)scanf("%d",&a[i]);for(i=1;i<=n-1;i++)for(j=i+1;j<=n;j++){if(a[i]>a[j]){t=a[i];a[i]=a[j];a[j]=t;}}dp[2][1]=(a[2]-a[1])*(a[2]-a[1]);for(j=1;j<=k;j++)for(i=j*2;i<=n;i++){dp[i][j]=dp[i-2][j-1]+(a[i]-a[i-1])*(a[i]-a[i-1]);if(j*2<i){dp[i][j]=fmin(dp[i-1][j],dp[i][j]);}}printf("%d\n",dp[n][k]);}return 0;}


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消