前面几章已经把整个斗地主AI算法工程完成的差不多了,接下来进入整合联调以及模拟测试模块。
测试模块主要任务就是代替服务器给出我们需要的数据。因为我们本来的计划是封装成类库通过服务器调用获取,其调用的接口无非就是叫分、被动出牌、主动出牌。
被动出牌和主动出牌我们已经完成,叫分我们已经实现了权值的获取,只需要在外面加一个区间划分即可:
/*获取叫分函数*/int LandScore(GameSituation &clsGameSituation, HandCardData &clsHandCardData){ int SumValue = 0; clsHandCardData.uctHandCardValue=get_HandCardValue(clsHandCardData); SumValue = clsHandCardData.uctHandCardValue.SumValue; cout << "SumValue is :" << SumValue << ","; cout << "NeedRound is :" << clsHandCardData.uctHandCardValue.NeedRound << endl; if (SumValue<10) { return 0; } else if (SumValue < 15) { return 1; } else if (SumValue < 20) { return 2; } else { return 3; }}
接下来就是模拟数据了,首先完成洗牌,即初始化牌值与随机打乱。
//洗牌void InitCards(vector <int> &Cards){ //先清空Cards Cards.clear(); vector <int> tmpCards; int i; //大王56,小王52,没有53,54,55号牌 for (i = 0; i < 53; i++) { tmpCards.push_back(i); } tmpCards.push_back(56); //顺序随机打乱 for (i = tmpCards.size(); i>0; i--) { srand(unsigned(time(NULL))); // 选中的随机下标 int index = rand() % i; Cards.push_back(tmpCards[index]); tmpCards.erase(tmpCards.begin() + index); }}
同时为了方便测试,我也做了一个指定牌型的函数。
//洗牌(指定牌型,用于测试)void InitCards_Appoint(vector <int> &Cards){ //先清空Cards Cards.clear(); /***********飞机与炸弹连续拆分逻辑测试**********/ Cards.push_back(48); Cards.push_back(50); Cards.push_back(49); Cards.push_back(44); Cards.push_back(47); Cards.push_back(35); Cards.push_back(40); Cards.push_back(46); Cards.push_back(34); Cards.push_back(36); Cards.push_back(45); Cards.push_back(33); Cards.push_back(23); Cards.push_back(43); Cards.push_back(31);Cards.push_back(22); Cards.push_back(42); Cards.push_back(30); Cards.push_back(21); Cards.push_back(41); Cards.push_back(29); Cards.push_back(19); Cards.push_back(39); Cards.push_back(27); Cards.push_back(18); Cards.push_back(38); Cards.push_back(26); Cards.push_back(17); Cards.push_back(37); Cards.push_back(25);Cards.push_back(15); Cards.push_back(32); Cards.push_back(20); Cards.push_back(14); Cards.push_back(28); Cards.push_back(16); Cards.push_back(13); Cards.push_back(24); Cards.push_back(12); Cards.push_back(11); Cards.push_back(3); Cards.push_back(7); Cards.push_back(10); Cards.push_back(2); Cards.push_back(6); Cards.push_back(9); Cards.push_back(1); Cards.push_back(5); Cards.push_back(8); Cards.push_back(0); Cards.push_back(4); Cards.push_back(51); Cards.push_back(52); Cards.push_back(56); }
洗完牌就是发牌了,发牌这里我们需要定义一个包含三个人手牌的结构,因为作为正常调用来说我们是不应该有这样的数据的。
//下发到三名玩家的手牌序列,此数据只用于测试,作为AI时不会获取struct ALLCardsList{ vector <int> arrCardsList[3];};
然后依次发送到玩家对应的手牌数组里,最后三张为底牌。
//发牌void SendCards(GameSituation & clsGameSituation, ALLCardsList &uctALLCardsList){ //洗牌 vector <int> Cards; InitCards(Cards); //InitCards_Appoint(Cards); int i, j, k; j = 0; for (k = 0; k < 17; k++) { for (i = 0; i < 3; i++,j++) { uctALLCardsList.arrCardsList[i].push_back(Cards[j]); } } //三张底牌 clsGameSituation.DiPai[0] = Cards[j]; clsGameSituation.DiPai[1] = Cards[j+1]; clsGameSituation.DiPai[2] = Cards[j+2]; return;}
再然后就是模拟游戏过程,首先定义游戏全局类,与三名玩家的手牌信息类。调用发牌函数完成发牌环节,可以用手牌信息类里面的PrintAll输出你想要的数据信息。
GameSituation clsGameSituation; ALLCardsList uctALLCardsList; //发牌 SendCards(clsGameSituation, uctALLCardsList); HandCardData arrHandCardData[3]; arrHandCardData[0].color_nHandCardList = uctALLCardsList.arrCardsList[0]; arrHandCardData[1].color_nHandCardList = uctALLCardsList.arrCardsList[1]; arrHandCardData[2].color_nHandCardList = uctALLCardsList.arrCardsList[2]; for (int i = 0; i < 3; i++) { arrHandCardData[i].Init(); arrHandCardData[i].nOwnIndex = i; } cout << "0号玩家牌为:" << endl; arrHandCardData[0].PrintAll(); cout << "1号玩家牌为:" << endl; arrHandCardData[1].PrintAll(); cout << "2号玩家牌为:" << endl; arrHandCardData[2].PrintAll(); cout << "底牌为:" << endl; cout << get_CardsName(clsGameSituation.DiPai[0]) << ',' << get_CardsName(clsGameSituation.DiPai[1]) << ',' << get_CardsName(clsGameSituation.DiPai[2]) << endl; cout << endl;
发完牌后开始叫地主,调用LandScore函数返回其叫的分值,只有比当前已叫的分值更高才可以刷新叫地主记录。若无人叫地主重新开一局,否则将三张底牌给地主,同时刷新地主手牌,且将地主设置成将要出牌的玩家
for (int i = 0; i < 3; i++) { int tmpLandScore = LandScore(clsGameSituation, arrHandCardData[i]); if (tmpLandScore > clsGameSituation.nNowLandScore) { clsGameSituation.nNowLandScore = tmpLandScore; clsGameSituation.nNowDiZhuID = i; } } if (clsGameSituation.nNowDiZhuID == -1) { cout << "无人叫地主" << endl; return; } cout << clsGameSituation.nNowDiZhuID << "号玩家是地主,叫分为:" << clsGameSituation.nNowLandScore << endl; clsGameSituation.nDiZhuID=clsGameSituation.nNowDiZhuID; clsGameSituation.nLandScore =clsGameSituation.nNowLandScore; //将三张底牌给地主 arrHandCardData[clsGameSituation.nDiZhuID].color_nHandCardList.push_back(clsGameSituation.DiPai[0]); arrHandCardData[clsGameSituation.nDiZhuID].color_nHandCardList.push_back(clsGameSituation.DiPai[1]); arrHandCardData[clsGameSituation.nDiZhuID].color_nHandCardList.push_back(clsGameSituation.DiPai[2]); //地主手牌刷新 arrHandCardData[clsGameSituation.nDiZhuID].Init(); //出牌玩家ID int indexID= clsGameSituation.nDiZhuID; cout << endl; cout << "0号玩家牌为:" << endl; arrHandCardData[0].PrintAll(); cout << "1号玩家牌为:" << endl; arrHandCardData[1].PrintAll(); cout << "2号玩家牌为:" << endl; arrHandCardData[2].PrintAll(); //当前控手玩家先为地主 clsGameSituation.nCardDroit = indexID;
接下来就是循环进行出牌了。在游戏全局类里我们设置了一个标志是否结束的变量,可以用于控制循环。出牌时我们只需调用get_PutCardList出牌函数即可。若某个玩家出完牌后手牌为0,则游戏结束。若玩家出过牌,则刷新游戏全局类里面当前牌型信息。
while (!clsGameSituation.Over) { get_PutCardList_2(clsGameSituation, arrHandCardData[indexID]);//获取出牌序列 arrHandCardData[indexID].PutCards(); cout << indexID << "号玩家出牌:" << endl; for (vector<int>::iterator iter = arrHandCardData[indexID].color_nPutCardList.begin(); iter != arrHandCardData[indexID].color_nPutCardList.end(); iter++) cout << get_CardsName(*iter) << (iter == arrHandCardData[indexID].color_nPutCardList.end() - 1 ? '\n' : ','); cout << endl; if (arrHandCardData[indexID].nHandCardCount == 0) { clsGameSituation.Over = true; if (indexID == clsGameSituation.nDiZhuID) { cout << "地主" << indexID << "号玩家获胜" << endl; } else { for (int i = 0; i < 3; i++) { if (i != clsGameSituation.nDiZhuID) { cout << "农民" << i << "号玩家获胜" << endl; } } } } if (arrHandCardData[indexID].uctPutCardType.cgType != cgZERO) { clsGameSituation.nCardDroit = indexID; clsGameSituation.uctNowCardGroup = arrHandCardData[indexID].uctPutCardType; } indexID == 2 ? indexID = 0 : indexID++; }
get_PutCardList函数做了一个分支,通过nCardDroit当前控手对象判断是主动出牌还是被动出牌
/*2.0版本策略 根据场上形势决定当前预打出的手牌——分支处理*/void get_PutCardList_2(GameSituation &clsGameSituation, HandCardData &clsHandCardData){ if (clsGameSituation.nCardDroit == clsHandCardData.nOwnIndex) { get_PutCardList_2_unlimit(clsGameSituation, clsHandCardData); } else { get_PutCardList_2_limit(clsGameSituation, clsHandCardData); } return;}
完成测试模块后,我们就可以调试程序了。
那么现在我们就可以愉快的玩耍了,下一章我们将观察几次对局情况进行样例的分析。
敬请关注下一章:斗地主AI算法——第十六章の样例分析
共同学习,写下你的评论
评论加载中...
作者其他优质文章