一、选取素材
本文选取的小说素材来自17k小说网的一篇小说《两只橙与遠太郎》,手工复制小说中的题记。
训练语料如下:
小说题记
语料格式
题记:此情可待成追忆,只是当时已惘然。
二、开发环境
三、实战代码
#!/bash/bin# -*-coding:utf-8-*-import sysimport osimport numpy as npimport collectionsimport tensorflow as tfimport tensorflow.contrib.rnn as rnnimport tensorflow.contrib.legacy_seq2seq as seq2seq BEGIN_CHAR = '^'END_CHAR = '$'UNKNOWN_CHAR = '*'MAX_LENGTH = 100MIN_LENGTH = 10max_words = 3000epochs = 50# 语料poetry_file = 'story.txt'# 模型文件存放位置save_dir = 'model'class Data: def __init__(self): self.batch_size = 64 self.poetry_file = poetry_file self.load() self.create_batches() def load(self): def handle(line): if len(line) > MAX_LENGTH: index_end = line.rfind('。', 0, MAX_LENGTH) index_end = index_end if index_end > 0 else MAX_LENGTH line = line[:index_end + 1] return BEGIN_CHAR + line + END_CHAR self.poetrys = [line.strip().replace(' ', '').split(':')[1] for line in open(self.poetry_file, encoding='utf-8')] self.poetrys = [handle(line) for line in self.poetrys if len(line) > MIN_LENGTH] # 所有字 words = [] for poetry in self.poetrys: words += [word for word in poetry] counter = collections.Counter(words) count_pairs = sorted(counter.items(), key=lambda x: -x[1]) words, _ = zip(*count_pairs) # 取出现频率最高的词的数量组成字典,不在字典中的字用'*'代替 words_size = min(max_words, len(words)) self.words = words[:words_size] + (UNKNOWN_CHAR,) self.words_size = len(self.words) # 字映射成id self.char2id_dict = {w: i for i, w in enumerate(self.words)} self.id2char_dict = {i: w for i, w in enumerate(self.words)} self.unknow_char = self.char2id_dict.get(UNKNOWN_CHAR) self.char2id = lambda char: self.char2id_dict.get(char, self.unknow_char) self.id2char = lambda num: self.id2char_dict.get(num) self.poetrys = sorted(self.poetrys, key=lambda line: len(line)) self.poetrys_vector = [list(map(self.char2id, poetry)) for poetry in self.poetrys] def create_batches(self): self.n_size = len(self.poetrys_vector) // self.batch_size self.poetrys_vector = self.poetrys_vector[:self.n_size * self.batch_size] self.x_batches = [] self.y_batches = [] for i in range(self.n_size): batches = self.poetrys_vector[i * self.batch_size: (i + 1) * self.batch_size] length = max(map(len, batches)) for row in range(self.batch_size): if len(batches[row]) < length: r = length - len(batches[row]) batches[row][len(batches[row]): length] = [self.unknow_char] * r xdata = np.array(batches) ydata = np.copy(xdata) ydata[:, :-1] = xdata[:, 1:] self.x_batches.append(xdata) self.y_batches.append(ydata)class Model: def __init__(self, data, model='lstm', infer=False): self.rnn_size = 128 self.n_layers = 2 if infer: self.batch_size = 1 else: self.batch_size = data.batch_size if model == 'rnn': cell_rnn = rnn.BasicRNNCell elif model == 'gru': cell_rnn = rnn.GRUCell elif model == 'lstm': cell_rnn = rnn.BasicLSTMCell cell = cell_rnn(self.rnn_size, state_is_tuple=False) self.cell = rnn.MultiRNNCell([cell] * self.n_layers, state_is_tuple=False) self.x_tf = tf.placeholder(tf.int32, [self.batch_size, None]) self.y_tf = tf.placeholder(tf.int32, [self.batch_size, None]) self.initial_state = self.cell.zero_state(self.batch_size, tf.float32) with tf.variable_scope('rnnlm'): softmax_w = tf.get_variable("softmax_w", [self.rnn_size, data.words_size]) softmax_b = tf.get_variable("softmax_b", [data.words_size]) with tf.device("/cpu:0"): embedding = tf.get_variable( "embedding", [data.words_size, self.rnn_size]) inputs = tf.nn.embedding_lookup(embedding, self.x_tf) outputs, final_state = tf.nn.dynamic_rnn( self.cell, inputs, initial_state=self.initial_state, scope='rnnlm') self.output = tf.reshape(outputs, [-1, self.rnn_size]) self.logits = tf.matmul(self.output, softmax_w) + softmax_b self.probs = tf.nn.softmax(self.logits) self.final_state = final_state pred = tf.reshape(self.y_tf, [-1]) # seq2seq loss = seq2seq.sequence_loss_by_example([self.logits], [pred], [tf.ones_like(pred, dtype=tf.float32)], ) self.cost = tf.reduce_mean(loss) self.learning_rate = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars), 5) optimizer = tf.train.AdamOptimizer(self.learning_rate) self.train_op = optimizer.apply_gradients(zip(grads, tvars))def train(data, model): with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(tf.global_variables()) n = 0 for epoch in range(epochs): sess.run(tf.assign(model.learning_rate, 0.002 * (0.97 ** epoch))) pointer = 0 for batche in range(data.n_size): n += 1 feed_dict = {model.x_tf: data.x_batches[pointer], model.y_tf: data.y_batches[pointer]} pointer += 1 train_loss, _, _ = sess.run([model.cost, model.final_state, model.train_op], feed_dict=feed_dict) sys.stdout.write('\r') info = "{}/{} (epoch {}) | train_loss {:.3f}" \ .format(epoch * data.n_size + batche, epochs * data.n_size, epoch, train_loss) sys.stdout.write(info) sys.stdout.flush() # save if (epoch * data.n_size + batche) % 1000 == 0 \ or (epoch == epochs - 1 and batche == data.n_size - 1): checkpoint_path = os.path.join(save_dir, 'model.ckpt') saver.save(sess, checkpoint_path, global_step=n) sys.stdout.write('\n') print("model saved to {}".format(checkpoint_path)) sys.stdout.write('\n')def sample(data, model, head=u''): def to_word(weights): t = np.cumsum(weights) s = np.sum(weights) sa = int(np.searchsorted(t, np.random.rand(1) * s)) return data.id2char(sa) for word in head: if word not in data.words: return u'{} 不在字典中'.format(word) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(tf.global_variables()) model_file = tf.train.latest_checkpoint(save_dir) saver.restore(sess, model_file) if head: print('生成题记 ---> ', head) poem = BEGIN_CHAR for head_word in head: poem += head_word x = np.array([list(map(data.char2id, poem))]) state = sess.run(model.cell.zero_state(1, tf.float32)) feed_dict = {model.x_tf: x, model.initial_state: state} [probs, state] = sess.run([model.probs, model.final_state], feed_dict) word = to_word(probs[-1]) while word != u',' and word != u'。': poem += word x = np.zeros((1, 1)) x[0, 0] = data.char2id(word) [probs, state] = sess.run([model.probs, model.final_state], {model.x_tf: x, model.initial_state: state}) word = to_word(probs[-1]) poem += word return poem[1:] else: poem = '' head = BEGIN_CHAR x = np.array([list(map(data.char2id, head))]) state = sess.run(model.cell.zero_state(1, tf.float32)) feed_dict = {model.x_tf: x, model.initial_state: state} [probs, state] = sess.run([model.probs, model.final_state], feed_dict) word = to_word(probs[-1]) while word != END_CHAR: poem += word x = np.zeros((1, 1)) x[0, 0] = data.char2id(word) [probs, state] = sess.run([model.probs, model.final_state], {model.x_tf: x, model.initial_state: state}) word = to_word(probs[-1]) return poemif __name__ == '__main__': # 训练模型 data = Data() model = Model(data=data, infer=False) print(train(data, model)) # 生成题记 # data = Data() # model = Model(data=data, infer=True) # print(sample(data, model, head='我为秋香'))
输出 生成题记 ---> 我为秋香 我罢性不行,为德劝仙兴。秋风暝冰始,香巢深器酒。
输出
作者:_两只橙_
链接:https://www.jianshu.com/p/2b3b253adb00
点击查看更多内容
为 TA 点赞
评论
共同学习,写下你的评论
评论加载中...
作者其他优质文章
正在加载中
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦