1 parse()方法的工作机制:
1. 因为使用的yield,而不是return。parse函数将会被当做一个生成器使用。scrapy会逐一获取parse方法中生成的结果,并判断该结果是一个什么样的类型;2. 如果是request则加入爬取队列,如果是item类型则使用pipeline处理,其他类型则返回错误信息。3. scrapy取到第一部分的request不会立马就去发送这个request,只是把这个request放到队列里,然后接着从生成器里获取;4. 取尽第一部分的request,然后再获取第二部分的item,取到item了,就会放到对应的pipeline里处理;5. parse()方法作为回调函数(callback)赋值给了Request,指定parse()方法来处理这些请求 scrapy.Request(url, callback=self.parse)6. Request对象经过调度,执行生成 scrapy.http.response()的响应对象,并送回给parse()方法,直到调度器中没有Request(递归的思路)7. 取尽之后,parse()工作结束,引擎再根据队列和pipelines中的内容去执行相应的操作;8. 程序在取得各个页面的items前,会先处理完之前所有的request队列里的请求,然后再提取items。7. 这一切的一切,Scrapy引擎和调度器将负责到底。
2 CrawlSpiders:定义了一些规则跟进link
通过下面的命令可以快速创建 CrawlSpider模板 的代码:
scrapy genspider -t crawl tencent tencent.com
上一个案例中,我们通过正则表达式,制作了新的url作为Request请求参数,现在我们可以换个花样...
class scrapy.spiders.CrawlSpider
它是Spider的派生类,Spider类的设计原则是只爬取start_url列表中的网页,而CrawlSpider类定义了一些规则(rule)来提供跟进link的方便的机制,从爬取的网页中获取link并继续爬取的工作更适合。
源码参考
class CrawlSpider(Spider): rules = () def __init__(self, *a, **kw): super(CrawlSpider, self).__init__(*a, **kw) self._compile_rules() #首先调用parse()来处理start_urls中返回的response对象 #parse()则将这些response对象传递给了_parse_response()函数处理,并设置回调函数为parse_start_url() #设置了跟进标志位follow = True #parse将返回item和跟进了的Request对象 def parse(self, response): return self._parse_response(response, self.parse_start_url, cb_kwargs={}, follow=True) #处理start_url中返回的response,需要重写 def parse_start_url(self, response): return [] def process_results(self, response, results): return results #从response中抽取符合任一用户定义'规则'的链接,并构造成Resquest对象返回 def _requests_to_follow(self, response): if not isinstance(response, HtmlResponse): return seen = set() #抽取之内的所有链接,只要通过任意一个'规则',即表示合法 for n, rule in enumerate(self._rules): links = [l for l in rule.link_extractor.extract_links(response) if l not in seen] #使用用户指定的process_links处理每个连接 if links and rule.process_links: links = rule.process_links(links) #将链接加入seen集合,为每个链接生成Request对象,并设置回调函数为_repsonse_downloaded() for link in links: seen.add(link) #构造Request对象,并将Rule规则中定义的回调函数作为这个Request对象的回调函数 r = Request(url=link.url, callback=self._response_downloaded) r.meta.update(rule=n, link_text=link.text) #对每个Request调用process_request()函数。 #该函数默认为indentify,即不做任何处理,直接返回该Request. yield rule.process_request(r) #处理通过rule提取出的连接,并返回item以及request def _response_downloaded(self, response): rule = self._rules[response.meta['rule']] return self._parse_response(response, rule.callback, rule.cb_kwargs, rule.follow) #解析response对象,会用callback解析处理他,并返回request或Item对象 def _parse_response(self, response, callback, cb_kwargs, follow=True): #首先判断是否设置了回调函数 (该回调函数可能是rule中的解析函数,也可能是 parse_start_url函数) #如果设置了回调函数(parse_start_url()),那么首先用parse_start_url()处理response对象, #然后再交给process_results处理。返回cb_res的一个列表 if callback: #如果是parse调用的,则会解析成Request对象 #如果是rule callback,则会解析成Item cb_res = callback(response, **cb_kwargs) or () cb_res = self.process_results(response, cb_res) for requests_or_item in iterate_spider_output(cb_res): yield requests_or_item #如果需要跟进,那么使用定义的Rule规则提取并返回这些Request对象 if follow and self._follow_links: #返回每个Request对象 for request_or_item in self._requests_to_follow(response): yield request_or_item def _compile_rules(self): def get_method(method): if callable(method): return method elif isinstance(method, basestring): return getattr(self, method, None) self._rules = [copy.copy(r) for r in self.rules] for rule in self._rules: rule.callback = get_method(rule.callback) rule.process_links = get_method(rule.process_links) rule.process_request = get_method(rule.process_request) def set_crawler(self, crawler): super(CrawlSpider, self).set_crawler(crawler) self._follow_links = crawler.settings.getbool('CRAWLSPIDER_FOLLOW_LINKS', True)
CrawlSpider继承于Spider类,除了继承过来的属性外(name、allow_domains),还提供了新的属性和方法:
3 LinkExtractors
class scrapy.linkextractors.LinkExtractor
Link Extractors 的目的很简单: 提取链接。
每个LinkExtractor有唯一的公共方法是 extract_links(),它接收一个 Response 对象,并返回一个 scrapy.link.Link 对象。
Link Extractors要实例化一次,并且 extract_links 方法会根据不同的 response 调用多次提取链接。
class scrapy.linkextractors.LinkExtractor( allow = (), deny = (), allow_domains = (), deny_domains = (), deny_extensions = None, restrict_xpaths = (), tags = ('a','area'), attrs = ('href'), canonicalize = True, unique = True, process_value = None )
主要参数:
allow
:满足括号中“正则表达式”的值会被提取,如果为空,则全部匹配。deny
:与这个正则表达式(或正则表达式列表)匹配的URL一定不提取。allow_domains
:会被提取的链接的domains。deny_domains
:一定不会被提取链接的domains。restrict_xpaths
:使用xpath表达式,和allow共同作用过滤链接。
4 rules:适合全站爬取
在rules中包含一个或多个Rule对象,每个Rule对爬取网站的动作定义了特定操作。如果多个rule匹配了相同的链接,则根据规则在本集合中被定义的顺序,第一个会被使用。
class scrapy.spiders.Rule( link_extractor, callback = None, cb_kwargs = None, follow = None, process_links = None, process_request = None )
link_extractor
:是一个Link Extractor对象,用于定义需要提取的链接。callback
: 从link_extractor中每获取到链接时,参数所指定的值作为回调函数,该回调函数接受一个response作为其第一个参数。注意:当编写爬虫规则时,避免使用parse作为回调函数。由于CrawlSpider使用parse方法来实现其逻辑,如果覆盖了 parse方法,crawl spider将会运行失败。
follow
:是一个布尔(boolean)值,指定了根据该规则从response提取的链接是否需要跟进。 如果callback为None,follow 默认设置为True ,否则默认为False。process_links
:指定该spider中哪个的函数将会被调用,从link_extractor中获取到链接列表时将会调用该函数。该方法主要用来过滤。process_request
:指定该spider中哪个的函数将会被调用, 该规则提取到每个request时都会调用该函数。 (用来过滤request)
5 爬取规则(Crawling rules)
继续用腾讯招聘为例,给出配合rule使用CrawlSpider的例子:
首先运行
scrapy shell "http://hr.tencent.com/position.php?&start=0#a"
导入LinkExtractor,创建LinkExtractor实例对象。:
from scrapy.linkextractors import LinkExtractor
page_lx = LinkExtractor(allow=('position.php?&start=\d+'))
> allow : LinkExtractor对象最重要的参数之一,这是一个正则表达式或正则表达式列表,必须要匹配这个正则表达式(或正则表达式列表)的URL才会被提取,如果没有给出(或为空), 它会匹配所有的链接。 > deny : 用法同allow,只不过与这个正则表达式匹配的URL不会被提取)。它的优先级高于 allow 的参数,如果没有给出(或None), 将不排除任何链接。3. 调用LinkExtractor实例的extract_links()方法查询匹配结果: page_lx.extract_links(response)
没有查到:
[]
注意转义字符的问题,继续重新匹配:
page_lx = LinkExtractor(allow=('position\.php\?&start=\d+')) # page_lx = LinkExtractor(allow = ('start=\d+')) page_lx.extract_links(response)
## CrawlSpider 版本 那么,scrapy shell测试完成之后,修改以下代码 ```python #提取匹配 'http://hr.tencent.com/position.php?&start=\d+'的链接 page_lx = LinkExtractor(allow = ('start=\d+')) rules = [ #提取匹配,并使用spider的parse方法进行分析;并跟进链接(没有callback意味着follow默认为True) Rule(page_lx, callback = 'parse', follow = True) ]
这么写对吗?
不对!千万记住 callback 千万不能写 parse,再次强调:由于CrawlSpider使用parse方法来实现其逻辑,因此回调函数必须保证不能与CrawlSpider中parse方法重名 , 如果覆盖了 parse方法,crawl spider将会运行失败。
# -*- coding: utf-8 -*-import reimport scrapyfrom scrapy.spiders import CrawlSpider, Rule # 提取超链接的规则from scrapy.linkextractors import LinkExtractor # 提取超链接from Tencent import itemsclass MytencentSpider(CrawlSpider): name = 'myTencent' allowed_domains = ['hr.tencent.com'] start_urls = ['https://hr.tencent.com/position.php?lid=2218&start=0#a'] page_lx = LinkExtractor(allow=("start=\d+")) rules = [ Rule(page_lx, callback="parseContent", follow=True) ] # parse(self, response) def parseContent(self, response): for data in response.xpath("//tr[@class=\"even\"] | //tr[@class=\"odd\"]"): item = items.TencentItem() item["jobTitle"] = data.xpath("./td[1]/a/text()")[0].extract() item["jobLink"] = "https://hr.tencent.com/" + data.xpath("./td[1]/a/@href")[0].extract() item["jobCategories"] = data.xpath("./td[1]/a/text()")[0].extract() item["number"] = data.xpath("./td[2]/text()")[0].extract() item["location"] = data.xpath("./td[3]/text()")[0].extract() item["releasetime"] = data.xpath("./td[4]/text()")[0].extract() yield item # for i in range(1, 200): # newurl = "https://hr.tencent.com/position.php?lid=2218&start=%d#a" % (i*10) # yield scrapy.Request(newurl, callback=self.parse)
运行:scrapy crawl tencent
6 robots协议
Robots协议(也称为爬虫协议、机器人协议等)的全称是“网络爬虫排除标准”(Robots Exclusion Protocol),网站通过Robots协议告诉搜索引擎哪些页面可以抓取,哪些页面不能抓取。robots.txt文件是一个文本文件。当一个搜索蜘蛛访问一个站点时,它会首先检查该站点根目录下是否存在robots.txt,如果存在,搜索机器人就会按照该文件中的内容来确定访问的范围;如果该文件不存在,所有的搜索蜘蛛将能够访问网站上所有没有被口令保护的页面。
User-agent: * 这里的*代表的所有的搜索引擎种类,*是一个通配符Disallow: /admin/ 这里定义是禁止爬寻admin目录下面的目录Disallow: /require/ 这里定义是禁止爬寻require目录下面的目录Disallow: /ABC/ 这里定义是禁止爬寻ABC目录下面的目录Disallow: /cgi-bin/*.htm 禁止访问/cgi-bin/目录下的所有以".htm"为后缀的URL(包含子目录)。Disallow: /*?* 禁止访问网站中所有包含问号 (?) 的网址Disallow: /.jpg$ 禁止抓取网页所有的.jpg格式的图片Disallow:/ab/adc.html 禁止爬取ab文件夹下面的adc.html文件。Allow: /cgi-bin/ 这里定义是允许爬寻cgi-bin目录下面的目录Allow: /tmp 这里定义是允许爬寻tmp的整个目录Allow: .htm$ 仅允许访问以".htm"为后缀的URL。Allow: .gif$ 允许抓取网页和gif格式图片Sitemap: 网站地图 告诉爬虫这个页面是网站地图
实例分析:淘宝网的 robots.txt文件
禁止robots协议将 ROBOTSTXT_OBEY = True改为False
7 Logging
Scrapy提供了log功能,可以通过 logging 模块使用。
可以修改配置文件settings.py,任意位置添加下面两行,效果会清爽很多。
LOG_ENABLED = True # 开启LOG_FILE = "TencentSpider.log" #日志文件名LOG_LEVEL = "INFO" #日志级别
Log levels
Scrapy提供5层logging级别:
CRITICAL - 严重错误(critical)
ERROR - 一般错误(regular errors)
WARNING - 警告信息(warning messages)
INFO - 一般信息(informational messages)
DEBUG - 调试信息(debugging messages)
logging设置
通过在setting.py中进行以下设置可以被用来配置logging:
LOG_ENABLED
默认: True,启用logging
LOG_ENCODING
默认: 'utf-8',logging使用的编码
LOG_FILE
默认: None,在当前目录里创建logging输出文件的文件名
LOG_LEVEL
默认: 'DEBUG',log的最低级别
LOG_STDOUT
默认: False 如果为 True,进程所有的标准输出(及错误)将会被重定向到log中。例如,执行 print "hello" ,其将会在Scrapy log中显示。
日志模块已经被scrapy弃用,改用python自带日志模块
import logging LOG_FORMAT = "%(asctime)s - %(levelname)s - %(message)s" # 设置输出格式DATE_FORMAT = "%Y/%m/%d %H:%M:%S" # 设置时间格式logging.basicConfig(filename='tianya.log', filemode='a+', format=LOG_FORMAT, datefmt=DATE_FORMAT) logging.warning('错误')
setting.py 设置抓取间隔
DOWNLOAD_DELAY = 0.25 #设置下载间隔为250ms
共同学习,写下你的评论
评论加载中...
作者其他优质文章