为了账号安全,请及时绑定邮箱和手机立即绑定

python SVM 案例,sklearn.svm.SVC 参数说明

标签:
Python


sklearn.svm.SVC 参数说明

经常用到sklearn中的SVC函数,这里把文档中的参数翻译了一些,以备不时之需。

本身这个函数也是基于libsvm实现的,所以在参数设置上有很多相似的地方。(PS: libsvm中的二次规划问题的解决算法是SMO)。

sklearn.svm.SVC(C=1.0,kernel='rbf', degree=3, gamma='auto',coef0=0.0,shrinking=True,probability=False,tol=0.001,cache_size=200, class_weight=None,verbose=False,max_iter=-1,decision_function_shape=None,random_state=None)

参数:

l  C:C-SVC的惩罚参数C?默认值是1.0

C越大,相当于惩罚松弛变量,希望松弛变量接近0,即对误分类的惩罚增大,趋向于对训练集全分对的情况,这样对训练集测试时准确率很高,但泛化能力弱。C值小,对误分类的惩罚减小,允许容错,将他们当成噪声点,泛化能力较强。

l  kernel :核函数,默认是rbf,可以是‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’

  0 – 线性:u’v

   1 – 多项式:(gamma*u’*v + coef0)^degree

  2 – RBF函数:exp(-gamma|u-v|^2)

  3 –sigmoid:tanh(gamma*u’*v + coef0)

l  degree :多项式poly函数的维度,默认是3,选择其他核函数时会被忽略。

l  gamma : ‘rbf’,‘poly’ 和‘sigmoid’的核函数参数。默认是’auto’,则会选择1/n_features

l  coef0 :核函数的常数项。对于‘poly’和 ‘sigmoid’有用。

l  probability :是否采用概率估计?.默认为False

l  shrinking :是否采用shrinking heuristic方法,默认为true

l  tol :停止训练的误差值大小,默认为1e-3

l  cache_size :核函数cache缓存大小,默认为200

l  class_weight :类别的权重,字典形式传递。设置第几类的参数C为weight*C(C-SVC中的C)

l  verbose :允许冗余输出?

l  max_iter :最大迭代次数。-1为无限制。

l  decision_function_shape :‘ovo’, ‘ovr’ or None, default=None3

l  random_state :数据洗牌时的种子值,int值

主要调节的参数有:C、kernel、degree、gamma、coef0。

案例代码:

#!/usr/bin/python# -*- coding:utf-8 -*-import numpy as npfrom sklearn import svmfrom scipy import statsfrom sklearn.metrics import accuracy_scoreimport matplotlib as mplimport matplotlib.pyplot as plt#设置画图过程中,图像的最小值 与最大值取值def extend(a, b, r):
    x = a - b
    m = (a + b) / 2
    return m-r*x/2, m+r*x/2if __name__ == "__main__":
    np.random.seed(0)
    N = 20
    x = np.empty((4*N, 2))
    print("{}\n{}".format(x.shape,x))
    means = [(-1, 1), (1, 1), (1, -1), (-1, -1)]
    print(means)
    sigmas = [np.eye(2), 2*np.eye(2), np.diag((1,2)), np.array(((2,1),(1,2)))]
    print(sigmas)    for i in range(4):
        mn = stats.multivariate_normal(means[i], sigmas[i]*0.3)        # print(mn)
        x[i*N:(i+1)*N, :] = mn.rvs(N)        # print(mn.rvs(N))
    a = np.array((0,1,2,3)).reshape((-1, 1))
    print(a)
    y = np.tile(a, N).flatten()
    print(np.tile(a, N) )
    print(y)
    clf = svm.SVC(C=1, kernel='rbf', gamma=1, decision_function_shape='ovo')    # clf = svm.SVC(C=1, kernel='linear', decision_function_shape='ovr')
    clf.fit(x, y)
    y_hat = clf.predict(x)
    acc = accuracy_score(y, y_hat)
    np.set_printoptions(suppress=True)    print (u'预测正确的样本个数:%d,正确率:%.2f%%' % (round(acc*4*N), 100*acc))    # decision_function
    print (clf.decision_function(x))    print (y_hat)

    x1_min, x2_min = np.min(x, axis=0)
    x1_max, x2_max = np.max(x, axis=0)
    x1_min, x1_max = extend(x1_min, x1_max, 1.05)
    x2_min, x2_max = extend(x2_min, x2_max, 1.05)
    x1, x2 = np.mgrid[x1_min:x1_max:500j, x2_min:x2_max:500j]
    x_test = np.stack((x1.flat, x2.flat), axis=1)
    y_test = clf.predict(x_test)
    y_test = y_test.reshape(x1.shape)
    cm_light = mpl.colors.ListedColormap(['#FF8080', '#A0FFA0', '#6060FF', '#F080F0'])
    cm_dark = mpl.colors.ListedColormap(['r', 'g', 'b', 'm'])
    mpl.rcParams['font.sans-serif'] = [u'SimHei']
    mpl.rcParams['axes.unicode_minus'] = False
    plt.figure(facecolor='w')
    plt.pcolormesh(x1, x2, y_test, cmap=cm_light)
    plt.scatter(x[:, 0], x[:, 1], s=40, c=y, cmap=cm_dark, alpha=0.7)
    plt.xlim((x1_min, x1_max))
    plt.ylim((x2_min, x2_max))
    plt.grid(b=True)
    plt.tight_layout(pad=2.5)
    plt.title(u'SVM多分类方法:One/One or One/Other', fontsize=18)
    plt.show()

分类结果:

https://img1.sycdn.imooc.com//5b3b78a20001869506400476.jpg

点击查看更多内容
2人点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消