ThreadPoolExecutor UML图:
避免Thread starvation deadlock
构造函数如下:
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) { ... }
- 核心和最大池大小:如果运行的线程少于 corePoolSize,则创建新线程来处理请求(即一个Runnable实例),即使其它线程是空闲的。如果运行的线程多于 corePoolSize 而少于 maximumPoolSize,则仅当队列满时才创建新线程。
- 保持活动时间:如果池中当前有多于 corePoolSize 的线程,则这些多出的线程在空闲时间超过 keepAliveTime 时将会终止。
- 排队:如果运行的线程等于或多于 corePoolSize,则 Executor 始终首选将请求加入队列BlockingQueue,而不添加新的线程。
- 被拒绝的任务:当 Executor 已经关闭,或者队列已满且线程数量达到maximumPoolSize时(即线程池饱和了),请求将被拒绝。这些拒绝的策略叫做Saturation Policy,即饱和策略。包括AbortPolicy, CallerRunsPolicy, DiscardPolicy, and DiscardOldestPolicy.
另外注意:
- 如果运行的线程少于 corePoolSize,ThreadPoolExecutor 会始终首选创建新的线程来处理请求;注意,这时即使有空闲线程也不会重复使用(这和数据库连接池有很大差别)。
- 如果运行的线程等于或多于 corePoolSize,则 ThreadPoolExecutor 会将请求加入队列BlockingQueue,而不添加新的线程(这和数据库连接池也不一样)。
- 如果无法将请求加入队列(比如队列已满),则创建新的线程来处理请求;但是如果创建的线程数超出 maximumPoolSize,在这种情况下,请求将被拒绝。
newCachedThreadPool使用了SynchronousQueue,并且是无界的。
线程工厂ThreadFactory
重写beforeExecute和afterExecute方法。
实际就是类似Number of Islands或者N-Queens等DFS问题的一种并行处理。
串行版本如下:
public class SequentialPuzzleSolver <P, M> {
private final Puzzle<P, M> puzzle;
private final Set<P> seen = new HashSet<P>();
public SequentialPuzzleSolver(Puzzle<P, M> puzzle) {
this.puzzle = puzzle;
}
public List<M> solve() {
P pos = puzzle.initialPosition();
return search(new PuzzleNode<P, M>(pos, null, null));
}
private List<M> search(PuzzleNode<P, M> node) {
if (!seen.contains(node.pos)) {
seen.add(node.pos);
if (puzzle.isGoal(node.pos))
return node.asMoveList();
for (M move : puzzle.legalMoves(node.pos)) {
P pos = puzzle.move(node.pos, move);
PuzzleNode<P, M> child = new PuzzleNode<P, M>(pos, move, node);
List<M> result = search(child);
if (result != null)
return result;
}
}
return null;
}
}
并行版本如下:
public class ConcurrentPuzzleSolver <P, M> {
private final Puzzle<P, M> puzzle;
private final ExecutorService exec;
private final ConcurrentMap<P, Boolean> seen;
protected final ValueLatch<PuzzleNode<P, M>> solution = new ValueLatch<PuzzleNode<P, M>>();
public ConcurrentPuzzleSolver(Puzzle<P, M> puzzle) {
this.puzzle = puzzle;
this.exec = initThreadPool();
this.seen = new ConcurrentHashMap<P, Boolean>();
if (exec instanceof ThreadPoolExecutor) {
ThreadPoolExecutor tpe = (ThreadPoolExecutor) exec;
tpe.setRejectedExecutionHandler(new ThreadPoolExecutor.DiscardPolicy());
}
}
private ExecutorService initThreadPool() {
return Executors.newCachedThreadPool();
}
public List<M> solve() throws InterruptedException {
try {
P p = puzzle.initialPosition();
exec.execute(newTask(p, null, null));
// block until solution found
PuzzleNode<P, M> solnPuzzleNode = solution.getValue();
return (solnPuzzleNode == null) ? null : solnPuzzleNode.asMoveList();
} finally {
exec.shutdown();
}
}
protected Runnable newTask(P p, M m, PuzzleNode<P, M> n) {
return new SolverTask(p, m, n);
}
protected class SolverTask extends PuzzleNode<P, M> implements Runnable {
SolverTask(P pos, M move, PuzzleNode<P, M> prev) {
super(pos, move, prev);
}
public void run() {
if (solution.isSet()
|| seen.putIfAbsent(pos, true) != null)
return; // already solved or seen this position
if (puzzle.isGoal(pos))
solution.setValue(this);
else
for (M m : puzzle.legalMoves(pos))
exec.execute(newTask(puzzle.move(pos, m), m, this));
}
}
}
点击查看更多内容
19人点赞
评论
共同学习,写下你的评论
评论加载中...
作者其他优质文章
正在加载中
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦