为了账号安全,请及时绑定邮箱和手机立即绑定

MaskRCNN训练自己的数据集,用VIA标注数据

标签:
人工智能

MaskRCNN(TensorFlow版)的项目地址:

https://github.com/matterport/Mask_RCNN


如果要用这个算法来训练自己的数据集,方法十分简单,只需修改代码的几个关键部分就好了。

准备数据集

首先将你的数据集分为两类,一类为训练集(train),一类为验证集(val)。

然后是标注数据,这里我用到的工具是VIA(VGG数据集的标注工具),操作起来十分方便。在网页上即可进行数据标注,VIA的链接为:

http://www.robots.ox.ac.uk/~vgg/software/via/

如下图:


修改源代码

数据集准备好之后,我们可以在源代码(balloon.py)的基础上进行修改,使之适应我们的数据集。

1、复制一份balloon.py的代码进行编辑,在class balloon_config下面修改分类个数,我这里是分成3类,所以是1+3,注意默认背景是一类:


class BalloonConfig(Config):    """Configuration for training on the toy  dataset.    Derives from the base Config class and overrides some values.    """    # Give the configuration a recognizable name    NAME = "balloon"    # We use a GPU with 12GB memory, which can fit two images.    # Adjust down if you use a smaller GPU.    IMAGES_PER_GPU = 2    # Number of classes (including background)    NUM_CLASSES = 1 + 3  # Background + 分类类别    # Number of training steps per epoch    STEPS_PER_EPOCH = 50    # Skip detections with < 90% confidence    DETECTION_MIN_CONFIDENCE = 0.9

2、解析VIA的标注信息

因为源码是用coco数据集,它的标注信息格式与VIA不同,所以我们要修改代码中解析标注信息(annotations)的部分。

在balloon.py中修改load_balloon函数:


def load_balloon(self, dataset_dir, subset):    """Load a subset of the Balloon dataset.    dataset_dir: Root directory of the dataset.    subset: Subset to load: train or val    """    # Add classes.    # self.add_class("大类名称",序号,"小类")    self.add_class("balloon", 1, "helmet")    self.add_class("balloon", 2, "person")    self.add_class("balloon", 3, "reflector")    # self.add_class("helmet",4,"cloth")    # Train or validation dataset?    assert subset in ["train", "val"]
    dataset_dir = os.path.join(dataset_dir, subset)    # We mostly care about the x and y coordinates of each region    annotations = json.load(open(os.path.join(dataset_dir, "via_region_data.json")))
    annotations = list(annotations.values())  # don't need the dict keys    # The VIA tool saves images in the JSON even if they don't have any    # annotations. Skip unannotated images.    annotations = [a for a in annotations if a['regions']]    # Add images    for a in annotations:        # Get the x, y coordinaets of points of the polygons that make up        # the outline of each object instance. There are stores in the        # shape_attributes (see json format above)        polygons = [r['shape_attributes'] for r in a['regions'].values()]
        name = [r['region_attributes']['name'] for r in a['regions'].values()]        # 序列字典         name_dict = {"helmet":1,"person":2,"reflector":3}
        name_id = [name_dict[a] for a in name]            # load_mask() needs the image size to convert polygons to masks.        # Unfortunately, VIA doesn't include it in JSON, so we must read        # the image. This is only managable since the dataset is tiny.        image_path = os.path.join(dataset_dir, a['filename'])
        image = skimage.io.imread(image_path)
        height, width = image.shape[:2]        # for i,j in enumerate(polygons):        self.add_image(            "balloon",            image_id=a['filename'],            # image_id='{}_{}'.format(a['filename'],i),  # use file name as a unique image id            path=image_path,            class_id=name_id,            width=width, height=height,            polygons=polygons)

注意 self.add_class的第一个参数要一致,表示的是这一个数据集的整体名字,第二个给你的类别标号,第三个参数是类别的具体名称。

3、修改load_mask函数:


def load_mask(self, image_id):    """Generate instance masks for an image.   Returns:    masks: A bool array of shape [height, width, instance count] with        one mask per instance.    class_ids: a 1D array of class IDs of the instance masks.    """    # If not a balloon dataset image, delegate to parent class.    image_info = self.image_info[image_id]    if image_info["source"] != "balloon" :        return super(self.__class__, self).load_mask(image_id)

    name_id = image_info["class_id"]    print(name_id)    # Convert polygons to a bitmap mask of shape    # [height, width, instance_count]    info = self.image_info[image_id]
    mask = np.zeros([info["height"], info["width"], len(info["polygons"])],                    dtype=np.uint8)    class_ids = np.array(name_id, dtype=np.int32)    for i, p in enumerate(info["polygons"]):        # Get indexes of pixels inside the polygon and set them to 1        rr, cc = skimage.draw.polygon(p['all_points_y'], p['all_points_x'])
        mask[rr, cc, i] = 1    # print( mask.astype(np.bool), name_id)    # Return mask, and array of class IDs of each instance. Since we have    # one class ID only, we return an array of 1s    return (mask.astype(np.bool), class_ids)

这样就修改好啦,模型就能正常地跑起来在你的数据集上训练啦,训练完的结果会保存在你所选择的目录里。

原文出处

点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 1
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消