作者:SnaiLiu
原文链接:https://segmentfault.com/a/1190000015282836
前言
在上一篇文章【大数据实践】Kafka生产者编程(1)——KafkaProducer详解中,主要对KafkaProducer
类中的函数进行了详细的解释,但仅针对其中的一些方法,对于producer背后的原理、机制,没有做深入讲解。因此,在本文章中,尝试介绍kafka
producer背后的一些机制和原理。在写作此文章时,自己也处于对Kafka的学习阶段,因此并不能非常全面地完全介绍,希望大家指正。
Producer拦截器(interceptor)和拦截链
实现接口
拦截器(interceptor)可以让用户在消息记录发送之前,或者producer回调方法执行之前,对消息或者回调信息做一些逻辑处理。拦截器实现了以下接口:
package org.apache.kafka.clients.producer;import org.apache.kafka.common.Configurable;public interface ProducerInterceptor<K, V> extends Configurable { ProducerRecord<K, V> onSend(ProducerRecord<K, V> var1); void onAcknowledgement(RecordMetadata var1, Exception var2); void close(); }
onSend()
:onSend函数将会在消息记录被发送之前被调用,它可以对ProducerRecord
做一些处理,返回处理之后的ProducerRecord
。onAcknowledgement()
:onAcknowledgement方法将在send时指定的回调函数执行之前被调用,可对执行结果进行一些处理。close()
:close方法将在执行producer.close()的时候被调用,可以释放资源等。
拦截链ProducerInterceptors
拦截链(ProducerInterceptors)包含了一个由多个拦截器组装起来的拦截器列表List<ProducerInterceptor<K, V>>
,在producer发送消息,消息回应以及close时,拦截链的onSend、onAcknowledgement、close方法会被调用,而这些方法中,会逐一调用每个拦截器的onSend、onAcknowledgement、close方法。就像是生成流水线上,各个处理程序一样。
拦截链类所在位置:
package org.apache.kafka.clients.producer.internals;public class ProducerInterceptors<K, V> implements Closeable {}
自定义拦截器
自定义一个计数拦截器,如下:
import org.apache.kafka.clients.producer.ProducerInterceptor;import org.apache.kafka.clients.producer.ProducerRecord;import org.apache.kafka.clients.producer.RecordMetadata;import java.util.Map;public class CounterInterceptor implements ProducerInterceptor<Integer, String> { public int sendCounter = 0; public int succCounter = 0; public int failCounter = 0; public void configure(Map<String, ?> configs) { } public ProducerRecord<Integer, String> onSend(ProducerRecord<Integer, String> record) { System.out.println("onSend called in CounterInterceptor, key = " + record.key()); sendCounter++; return record; } public void onAcknowledgement(RecordMetadata recordMetadata, Exception exception) { if (exception == null) { System.out.println("record send ok. topic = " + recordMetadata.topic() + "partion = " + recordMetadata.partition()); succCounter++; } else { System.out.println("record send failed. topic = " + recordMetadata.topic() + "partion = " + recordMetadata.partition()); failCounter++; } } public void close() { System.out.println("sendCounter = " + sendCounter + " succCounter = " + succCounter + " failCounter = " + failCounter); } }
将拦截器装配到自定义的Producer中:
package myproducers; /** * kafka消息生产者—— */import org.apache.kafka.clients.producer.*;import org.apache.kafka.common.serialization.IntegerSerializer;import org.apache.kafka.common.serialization.StringSerializer;import java.util.ArrayList;import java.util.List;import java.util.Properties;import java.util.concurrent.ExecutionException;public class GameRecordProducer { public static final String KAFKA_SERVER_URL = "localhost"; public static final int KAFKA_SERVER_PORT = 9092; public GameRecordProducer() {} public static void main(String[] args) { Properties props = new Properties(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, KAFKA_SERVER_URL + ":" + KAFKA_SERVER_PORT); props.put(ProducerConfig.CLIENT_ID_CONFIG, "myproducers.GameRecordProducer"); props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class.getName()); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName()); List<String> intercepters = new ArrayList<String>(); intercepters.add("myproducers.CounterInterceptor"); props.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, intercepters); KafkaProducer<Integer, String> producer; producer = new KafkaProducer<Integer, String>(props); try { producer.send(new ProducerRecord<Integer,String>("game-score","message1")).get(); } catch (InterruptedException e) { e.printStackTrace(); } catch (ExecutionException e) { e.printStackTrace(); } } }
消息记录类ProducerRecord
消息记录类中,记录了需要发送的消息内容以及要发送到的主题、分区等内容。类的定义如下:
package org.apache.kafka.clients.producer;public class ProducerRecord<K, V> { private final String topic; private final Integer partition; private final Headers headers; private final K key; private final V value; private final Long timestamp;
topic
:必须字段,表示该消息记录record发送到那个topic。value
:必须字段,表示消息内容。partition
:可选字段,要发送到哪个分区partition。如果record中设置了partition,则发往该partition;
如果没有设置partition,但指定key值,则会根据key序列化之后的字节数组的hashcode进行取模运算,得到partition。
如果没有设置partition和key,则producer会采用迭代方式(类似于随机数)。
key
:可选字段,消息记录的key,可用于计算选定partition。timestamp
:可选字段,时间戳;表示该条消息记录的创建时间createtime,如果不指定,则默认使用producer的当前时间。headers
:可选字段,
默认partition算法
kafka producer的partition制定策略为:
如果record中设置了partition,则发往该partition;
如果没有设置partition,但指定key值,则会根据key序列化之后的字节数组的hashcode进行取模运算,得到partition。
如果没有设置partition和key,则producer会采用类似于轮询方式(但不是严格轮询,而是类似于随机数)。
具体算法源代码如下:
package org.apache.kafka.clients.producer.internals;import ...public class DefaultPartitioner implements Partitioner { // ... public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) { // 从集群中获取该topic分区列表及分区数量。 List<PartitionInfo> partitions = cluster.partitionsForTopic(topic); int numPartitions = partitions.size(); if (keyBytes == null) { // 没有指定key值,及key值序列化之后为null,则获取下一个可用的partition值 int nextValue = this.nextValue(topic); // 获取该topic可用的分区列表 List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic); if (availablePartitions.size() > 0) { // 可用分区列表大于0时, int part = Utils.toPositive(nextValue) % availablePartitions.size(); return ((PartitionInfo)availablePartitions.get(part)).partition(); } else { // toPositive:确保为正数,Math.abs(Integer.MIN_VALUE)为负数,所以不能用。 // toPositive(Integer.MIN_VALUE) == 0 // toPositive(-1) == 2147483647 // 取余 return Utils.toPositive(nextValue) % numPartitions; } } else { // 使用murmur2 hash算法,求得值,在取余 return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions; } } // 获取下一个值 private int nextValue(String topic) { AtomicInteger counter = (AtomicInteger)this.topicCounterMap.get(topic); if (null == counter) { counter = new AtomicInteger(ThreadLocalRandom.current().nextInt()); AtomicInteger currentCounter = (AtomicInteger)this.topicCounterMap.putIfAbsent(topic, counter); if (currentCounter != null) { counter = currentCounter; } } return counter.getAndIncrement(); } ... }
自定义Partitioner
除了使用默认的Partitioner之外,也可以使用自定义的Partitioner,已实现更好的分区均衡。
package myproducers;import org.apache.kafka.clients.producer.Partitioner;import org.apache.kafka.common.Cluster;import java.util.Map;public class ConstantPartioner implements Partitioner { public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) { // 固定永远返回1,即全部放在1分区 return 1; } public void close() { } public void configure(Map<String, ?> configs) { } }
在构建KafkaProducer对象时,在配置信息中,将自定义的Partitioner类配置进去:
kafkaProps.put("partitioner.class", "myproducer.ConstantPartitioner");
小结
本文章介绍了kafka producer中两个比较独立概念,在实际开发过程中,可作为我们程序的扩展点。
在Kafka生产者编程(2)
系列文章中,旨在能够比较完善地介绍在Kafka producer编程过程中涉及的原理和
实践方式。后续的文章可能会对producer消息发送流程进行一次梳理,以便从全局了解producer。
共同学习,写下你的评论
评论加载中...
作者其他优质文章