概述
深入探索机器学习教程,本文全面覆盖从基础概念到实战应用,包括监督、非监督和强化学习分类,以及Python编程基础、数据预处理、常用算法实现与评估优化,带你从入门到掌握机器学习实战技能。
入门概念机器学习定义
机器学习是一门关于让计算机从数据中学习和改进的学科。它通过算法使计算机系统能够自动改进,而无需进行显式编程。
机器学习分类
机器学习主要分为三大类:
- 监督学习:在训练过程中,算法学习输入数据与输出结果之间的关系。这通常用于预测问题,如回归(预测数值结果)和分类(预测类别)。
- 非监督学习:算法在没有标签数据的情况下学习特征。典型用例包括聚类(分组相似数据)和降维(减少数据维度)。
- 强化学习:通过与环境互动获得奖励或惩罚,算法学习最优行为策略。这类学习常见于智能游戏和控制机器人等领域。
示例代码
import pandas as pd
import matplotlib.pyplot as plt
# 加载数据
df = pd.read_csv('data.csv')
print(df.head())
# 查看数据描述
print(df.describe())
# 绘制数据分布直方图
df['column_name'].hist()
plt.show()
Python编程基础
示例代码
from IPython.display import display
from sklearn.metrics import mean_squared_error, accuracy_score, precision_score, recall_score, f1_score
# Jupyter Notebook入门
from IPython.display import display
from IPython.html.widgets import interact
# 基础数据处理与可视化
import pandas as pd
import matplotlib.pyplot as plt
# 数据清洗与整理
data = pd.DataFrame({
'a': [1, 2, 3, 4, 5],
'b': [10, 20, 30, 40, 50],
'c': [1, 2, 1, 1, 1]
})
data = data.dropna()
# 使用中位数填充缺失值
data['b'].fillna(data['b'].median(), inplace=True)
# 类型转换
data['c'] = data['c'].astype('category')
display(data)
# 数据集划分与验证集准备
from sklearn.model_selection import train_test_split
X = data.drop('c', axis=1)
y = data['c']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 模型评估与优化
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X_train, y_train)
predictions = lr.predict(X_test)
print(f"Mean Squared Error: {mean_squared_error(y_test, predictions)}")
display(accuracy_score(y_test, predictions))
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
predictions = knn.predict(X_test)
print(f"Accuracy: {accuracy_score(y_test, predictions)}")
数据预处理
示例代码
from sklearn.preprocessing import StandardScaler
# 特征选择
selected_features = ['feature1', 'feature2', 'feature3']
# 使用scikit-learn进行数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(data[selected_features])
机器学习实战
示例代码
from sklearn.tree import DecisionTreeClassifier
# 决策树与随机森林案例
dt = DecisionTreeClassifier()
dt.fit(X_train, y_train)
predictions = dt.predict(X_test)
print(f"Accuracy: {accuracy_score(y_test, predictions)}")
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_estimators=100)
rf.fit(X_train, y_train)
predictions = rf.predict(X_test)
print(f"Accuracy: {accuracy_score(y_test, predictions)}")
示例代码
from sklearn.svm import SVC
# 支持向量机应用
svm = SVC(kernel='linear')
svm.fit(X_train, y_train)
predictions = svm.predict(X_test)
print(f"Accuracy: {accuracy_score(y_test, predictions)}")
示例代码
from sklearn.naive_bayes import GaussianNB
# 朴素贝叶斯分类器演示
nb = GaussianNB()
nb.fit(X_train, y_train)
predictions = nb.predict(X_test)
print(f"Accuracy: {accuracy_score(y_test, predictions)}")
模型评估与优化
示例代码
# K近邻算法实战
from sklearn.model_selection import cross_val_score
scores = cross_val_score(knn, X, y, cv=5)
print(f"Cross-Validation Scores: {scores}")
print(f"Mean Score: {scores.mean()}")
示例代码
from sklearn.model_selection import GridSearchCV
param_grid = {'n_neighbors': [3, 5, 7, 9]}
grid_search = GridSearchCV(knn, param_grid, cv=5)
grid_search.fit(X_train, y_train)
print(f"Best Parameters: {grid_search.best_params_}")
项目实践
示例代码
from sklearn.datasets import load_iris
# 加载小型数据集
iris = load_iris()
X, y = iris.data, iris.target
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
dt = DecisionTreeClassifier()
dt.fit(X_train, y_train)
# 预测和评估
predictions = dt.predict(X_test)
accuracy = dt.score(X_test, y_test)
print(f"Accuracy: {accuracy}")
# 特征重要性分析
importances = dt.feature_importances_
print(f"Feature Importances: {importances}")
示例代码
from sklearn.datasets import make_classification
# 使用机器学习解决实际问题案例分享
X, y = make_classification(n_samples=1000, n_features=20, n_informative=15, n_redundant=5, random_state=42)
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
rf = RandomForestClassifier(n_estimators=100)
rf.fit(X_train, y_train)
# 预测和评估
predictions = rf.predict(X_test)
accuracy = rf.score(X_test, y_test)
print(f"Accuracy: {accuracy}")
# 特征重要性分析
importances = rf.feature_importances_
print(f"Feature Importances: {importances}")
点击查看更多内容
为 TA 点赞
评论
共同学习,写下你的评论
评论加载中...
作者其他优质文章
正在加载中
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦