为了账号安全,请及时绑定邮箱和手机立即绑定

LeetCode 周赛上分之旅 #46 经典二分答案与质因数分解

标签:
算法

学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度也更复杂。在这个专栏里,小彭与你分享每场 LeetCode 周赛的解题报告,一起体会上分之旅。

本文是 LeetCode 上分之旅系列的第 46 篇文章,往期回顾请移步到文章末尾~

LeetCode 周赛 363

T1. 计算 K 置位下标对应元素的和(Easy)

  • 标签:位运算

T2. 让所有学生保持开心的分组方法数(Medium)

  • 标签:贪心、排序、计数排序

T3. 最大合金数(Medium)

  • 标签:二分查找

T4. 完全子集的最大元素和(Hard)

  • 标签:数学、质因素分解、散列表


T1. 计算 K 置位下标对应元素的和(Easy)

https://leetcode.cn/problems/sum-of-values-at-indices-with-k-set-bits/description/

题解(模拟)

简单模拟题。

写法 1:

class Solution {
    fun sumIndicesWithKSetBits(nums: List<Int>, k: Int): Int {
        var ret = 0
        for (i in nums.indices) {
            if (Integer.bitCount(i) == k) ret += nums[i]
        }
        return ret
    }
}

写法 2:

class Solution {
    fun sumIndicesWithKSetBits(nums: List<Int>, k: Int): Int {
        return nums.indices.fold(0) { acc, it -> if (Integer.bitCount(it) == k) acc + nums[it] else acc}
    }
}

复杂度分析:

  • 时间复杂度:O(n)O(n)O(n) Java Integer#bitCount 的时间复杂度是 O(1)O(1)O(1)
  • 空间复杂度:O(1)O(1)O(1) 仅使用常数级别空间。

T2. 让所有学生保持开心的分组方法数(Medium)

https://leetcode.cn/problems/happy-students/description/

问题分析

思考选哪个:

  • 条件 1: 如果选中的学生 nums[i]nums[i]nums[i] 越小,那么越容易满足选中人数 > nums[i]nums[i]nums[i]
  • 条件 2: 如果未选中的学生 nums[i]nums[i]nums[i] 越大,那么越容易满足选中人数 < nums[i]nums[i]nums[i]

因此,在合法的选择方案中,应该优先选择越小的学生。

题解(排序 + 贪心)

先对数组排序,再枚举分割点验证条件 1 与条件 2:

6,0,3,3,6,7,2,7 

排序 => 

0,2,3,3,6,6,7,7
|0,2,3,3,6,6,7,7
0|2,3,3,6,6,7,7
0,2|3,3,6,6,7,7
0,2,3|3,6,6,7,7

对于分割点 i 的要求是:

  • 条件 1:i+1>nums[i]i + 1 > nums[i]i+1>nums[i],利用有序性质只需要判断已选列表的最大值 nums[i]nums[i]nums[i]
  • 条件 2:i+1<nums[i+1]i + 1 < nums[i + 1]i+1<nums[i+1],利用有序性质只需要判断未选列表的最小值 nums[i+1]nums[i + 1]nums[i+1]
  • 最后针对全选和都不选的情况特殊判断。
class Solution {
    fun countWays(nums: MutableList<Int>): Int {
        nums.sort()
        val n = nums.size
        var ret = 0
        // 都不选
        if (nums[0] > 0) ret += 1
        // 都选
        if (nums[n - 1] < n) ret += 1
        // 选一部分
        for (i in 0 until n - 1) {
            if (nums[i] < i + 1 && nums[i + 1] > i + 1) ret += 1
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度:O(nlgn)O(nlgn)O(nlgn) 瓶颈在排序;
  • 空间复杂度:O(lgn)O(lgn)O(lgn) 排序递归栈空间。

T3. 最大合金数(Medium)

https://leetcode.cn/problems/maximum-number-of-alloys/description/

问题分析

初步分析:

  • 问题目标: 求在预算限制下最大可以制造的合金数量;
  • 关键信息: 所有合金都需要由同一台机器制造,这样难度就降低很多了。

容易发现原问题的单调性:

  • 如果合金数 x 可以制造,那么合金数 x−1x - 1x1 一定可以制造;
  • 如果合金数 x 不可制造,那么合金数 x+1x + 1x+1 一定不可制造。

因此,可以用二分答案来解决问题:

  • 合金数的下界:000
  • 合金数的上界:2∗1082 * 10^82108,即金钱和初始金属的最大值;

现在需要思考的问题是: 「如何验证合金数 xxx 可以构造」

由于所有合金都需要由同一台机器制造,判断很简单,只需要先计算目标数量需要的每种金属的初始金属数是否足够,不足则花金钱购买。如果花费超过限制则不可制造。

题解(二分答案)

基于以上问下,我们枚举机器,使用二分查找寻找可以制造的合金数的上界:

class Solution {
    fun maxNumberOfAlloys(n: Int, k: Int, limit: Int, composition: List<List<Int>>, stock: List<Int>, cost: List<Int>): Int {
        var ret = 0
        // 枚举方案
        for (com in composition) {
            fun check(num: Int): Boolean {
                // 计算需要的金属原料
                var money = 0L
                for (i in 0 until n) {
                    // 原料不足,需要购入
                    money += max(0L, 1L * com[i] * num - stock[i]) * cost[i] // 注意整型溢出
                    if (money > limit.toLong()) return false
                }
                return true
            }

            var left = 0
            var right = 2*1e8.toInt()
            while (left < right) {
                val mid = (left + right + 1) ushr 1
                if (check(mid)) {
                    left = mid
                } else {
                    right = mid - 1
                }
            }
            ret = max(ret, left)
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度:KaTeX parse error: Expected 'EOF', got '·' at position 4: O(k·̲n·lgU) 其中 kkk 为机器数,nnn 为金属种类,UUU 为二分上界;
  • 空间复杂度:O(1)O(1)O(1) 除结果数组外仅使用常量级别空间。

T4. 完全子集的最大元素和(Hard)

https://leetcode.cn/problems/maximum-element-sum-of-a-complete-subset-of-indices/description/

问题分析

初步分析:

  • 问题目标: 求解满足条件的目标子集的元素最大和;
  • 目标子集: 子集元素的下标两两相乘的乘积是完全平方数,允许仅包含一个元素的子集;

观察测试用例 2:

  • 对于下标 111 和下标 444:两个完全平方数的乘积自然是完全平方数;
  • 对于下标 222 和下标 888222888 都包含质因子 222222 的平方自然是完全平方数;

由此得出结论:

  • 核心思路: 我们消除每个下标中的完全平方数因子,再对剩余的特征分组,能够构造目标子集的方案有且只能出现在相同的特征分组中(否则,子集中一定存在两两相乘不是完全平方数的情况)。
{2 | 6} x 需要相同的因子
{6 | 6} ok 

思考实现:

  • 预处理: 预处理覆盖所有测试用例下标的特征值
  • 质因素分解: 有 2 种基础算法:

朴素算法:枚举 [2,n][2, \sqrt{n}][2,n] 将出现次数为奇数的质因子记录到特征值中,时间复杂度是 O(n)O(\sqrt{n})O(n)

private val U = 1e4.toInt()
private val core = IntArray(U + 1)
init {
    for (num in 1 .. U) {
        // 质因素分解
        var prime = 2
        var x = num
        var key = 1
        while (prime * prime <= x) {
            var cnt = 0
            while (x % prime == 0) {
                x /= prime
                cnt ++
            }
            if (cnt % 2 == 1) key *= prime // 记录特征值
            prime ++
        }
        if (x > 1) key *= x // 记录特征值
        core[num] = key
    }
}

筛法:枚举质因子,将记录质因子的整数倍的特征值。

private val U = 1e4.toInt()
private val core = IntArray(U + 1) { 1 }
private val isMark = BooleanArray(U + 1)
init {
    // 质因素分解
    for (i in 2 .. U) {
        // 检查是否为质数,这里不需要调用 isPrime() 函数判断是否质数,因为它没被小于它的数标记过,那么一定不是合数
        if (isMark[i]) continue
        for (num in i .. U step i) {
            isMark[num] = true
            var x = num
            var cnt = 0
            while (x % i == 0) {
                x /= i
                cnt ++
            }
            if (cnt % 2 != 0) core[num] *= i // 记录特征值
        }
    }
}

题解一(质因素分解 + 分桶)

组合以上技巧,枚举下标做质因数分解,将数值累加到分桶中,最后返回最大分桶元素和。

class Solution {

    companion object {
        private val U = 1e4.toInt()
        private val core = IntArray(U + 1)
        init {
            for (num in 1 .. U) {
                // 质因素分解
                var prime = 2
                var x = num
                var key = 1
                while (prime * prime <= x) {
                    var cnt = 0
                    while (x % prime == 0) {
                        x /= prime
                        cnt ++
                    }
                    if (cnt % 2 == 1) key *= prime // 记录特征值
                    prime ++
                }
                if (x > 1) key *= x // 记录特征值
                core[num] = key
            }
        }
    }

    fun maximumSum(nums: List<Int>): Long {
        var ret = 0L
        val buckets = HashMap<Int, Long>()
        for (i in 1 .. nums.size) {
            val key = core[i]
            buckets[key] = buckets.getOrDefault(key, 0) + nums[i - 1]
            ret = max(ret, buckets[key]!!)
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度:预处理时间为 O(UU)O(U\sqrt{U})O(UU),单次测试用例时间为 O(n)O(n)O(n)
  • 空间复杂度:O(U)O(U)O(U) 预处理空间,单次测试用例空间比较松的上界为 O(n)O(n)O(n)

题解二(找规律)

题解一的时间复杂度瓶颈在之因素分解。

继续挖掘数据特征,我们观察同一个分桶内的数据规律:

假设分桶中的最小值为 x,那么将分桶的所有元素排序后必然是以下序列的子序列:x,4∗x,9∗x,16∗x…{x, 4 * x, 9 * x, 16 * x…}x,4x,9x,16x,由此发现规律:我们可以枚举分桶的最小值,再依次乘以完全平方数序列来计算,既可以快速定位分桶中的元素,而不需要预处理质因数分解。

那怎么度量此算法的时间复杂度呢?

显然,该算法一个比较松上界是 KaTeX parse error: Expected 'EOF', got '·' at position 4: O(n·̲C),其中 CCC 为数据范围内的完全平方数个数,C=100C = 100C=100。严格证明参考羊神题解,该算法线性时间复杂度 O(n)O(n)O(n)

class Solution {

    companion object {
        // 预处理完全平方数序列
        private val s = LinkedList<Int>()
        init {
            for (i in 1 .. 100) {
                s.add(i * i)
            }
        }
    }

    fun maximumSum(nums: List<Int>): Long {
        val n = nums.size
        var ret = 0L
        // 枚举分桶最小值
        for (i in 1 .. n) {
            var sum = 0L
            for (k in s) {
                if (k * i > n) break
                sum += nums[k * i - 1]
            }
            ret = max(ret, sum)
        }
        return ret
    }
}

复杂度分析:

  • 时间复杂度:O(n)O(n)O(n) 线性算法;
  • 空间复杂度:O(C)O(C)O(C) 预处理完全平方数序列空间,可以优化。

点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
移动开发工程师
手记
粉丝
18
获赞与收藏
36

关注作者,订阅最新文章

阅读免费教程

  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消