安装Prometheus
tar -zxvf prometheus-2.34.0.linux-amd64.tar.gz
mv prometheus-2.34.0.linux-amd64 prometheus
vim prometheus.yml
# my global config
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
# scrape_timeout is set to the global default (10s).
# Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets:
- localhost:9093
# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
- "rules/host_rules.yml"
# - "first_rules.yml"
# - "second_rules.yml"
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: "prometheus"
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ["localhost:9090"]
- job_name: 'agent-web01'
static_configs:
- targets: ['172.31.32.104:9100']
- job_name: 'agent-web02'
static_configs:
- targets: ['172.31.29.223:9100']
- job_name: 'java'
static_configs:
- targets: ['172.31.29.223:8100']
metrics_path: '/actuator/prometheus'
创建规则
mkdir -p /root/prometheus/rules
cat host_rules.yml
groups:
- name: 系统资源告警规则
rules:
- alert: CPU使用率告警
expr: 100 - (avg by (instance)(irate(node_cpu_seconds_total{mode="idle"}[1m]) )) * 100 > 80
for: 1m
labels:
user: prometheus
severity: warning
annotations:
description: "服务器: CPU使用超过80%!(当前值: {{ humanize $value }}%)"
- alert: 内存使用率告警
expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes+node_memory_Buffers_bytes+node_memory_Cached_bytes )) / node_memory_MemTotal_bytes * 100 > 80
for: 1m
labels:
user: prometheus
severity: warning
annotations:
description: "服务器: 内存使用超过80%!(当前值: {{ humanize $value }}%)"
- alert: 磁盘告警规则
expr: 100 - (node_filesystem_free_bytes{mountpoint="/",fstype=~"ext4|xfs"} / node_filesystem_size_bytes{fstype=~"ext4|xfs"} * 100) > 70
for: 1m
labels:
user: prometheus
severity: warning
annotations:
description: "服务器: 磁盘使用超过70%!(当前值: {{ humanize $value }}%)"
启动
nohup ./prometheus &
效果图
安装alertmanager
tar -zxvf alertmanager-0.24.0.linux-amd64.tar.gz
mv alertmanager-0.24.0.linux-amd64 alertmanager
vim alertmanager.yml
具体可以去企业微信后台查找相关参数
global:
resolve_timeout: 2m
wechat_api_url: 'https://qyapi.weixin.qq.com/cgi-bin/'
wechat_api_secret: '<你的企业微信secret>'
wechat_api_corp_id: '<你的企业微信id>'
route:
group_by: ['alertname']
group_wait: 10s
group_interval: 10s
repeat_interval: 1h
receiver: 'wechat'
receivers:
- name: 'wechat'
wechat_configs:
- send_resolved: true
to_party: '1'
agent_id: '<你的企业微信应用id>'
templates:
- '/alertmanager/*.tmpl'
yaml语法检查
./amtool check-config alertmanager.yml
企业微信报警模板
cat wechat.tmpl
{{ define "wechat.default.message" }}
{{- if gt (len .Alerts.Firing) 0 -}}
{{- range $index, $alert := .Alerts -}}
======== 异常告警 ========
告警名称:{{ $alert.Labels.alertname }}
告警级别:{{ $alert.Labels.severity }}
告警机器:{{ $alert.Labels.instance }} {{ $alert.Labels.device }}
告警详情:{{ $alert.Annotations.summary }}
告警时间:{{ $alert.StartsAt.Format "2006-01-02 15:04:05" }}
========== END ==========
{{- end }}
{{- end }}
{{- if gt (len .Alerts.Resolved) 0 -}}
{{- range $index, $alert := .Alerts -}}
======== 告警恢复 ========
告警名称:{{ $alert.Labels.alertname }}
告警级别:{{ $alert.Labels.severity }}
告警机器:{{ $alert.Labels.instance }}
告警详情:{{ $alert.Annotations.summary }}
告警时间:{{ $alert.StartsAt.Format "2006-01-02 15:04:05" }}
恢复时间:{{ $alert.EndsAt.Format "2006-01-02 15:04:05" }}
========== END ==========
{{- end }}
{{- end }}
{{- end }}
启动
nohup ./alertmanager &
安装Grafana
tar -zxvf grafana-8.4.6.linux-amd64.tar.gz
mv grafana-8.4.6.linux-amd64 grafana
配置未更改,走的默认,也可以根据具体情况做相应的配置改动
启动
nohup ./grafana &
配置数据源为Prometheus
因为在本地,所以首选localhost
保存并测试
导入配置
grafana dashboard地址
11074 ------1 Node Exporter for Prometheus Dashboard EN 20201010
1860 -------Node Exporter Full
4701 -------JVM (Micrometer)
参考链接
https://blog.51cto.com/u_15060547/3817600
https://www.cnblogs.com/Devinhao/articles/16180018.html
点击查看更多内容
为 TA 点赞
评论
共同学习,写下你的评论
评论加载中...
作者其他优质文章
正在加载中
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦