为了账号安全,请及时绑定邮箱和手机立即绑定

二叉树面试题:前中序求后序、中后序求前序

在面试时,避免不了的会遇到一些数据结构的面试题,今天我们就来了解一下二叉树的经典面试题:

已知二叉树的前序遍历顺序为ABDCEGHF,中序遍历顺序为DBAGEHCF,求该二叉树的后序遍历。

还有:

已知二叉树的中序遍历顺序为DBAGEHCF,后序遍历顺序为DBGHEFCA,求该二叉树的前序遍历。

类似的面试题应该如何应对呢?

什么是二叉树?

在开始之前,容我再唠叨几句:什么是二叉树?二叉树(Binary Tree)是一种特殊的树,树上的每个结点最多有两个子树的树结构,也就是说每一个父结点最多长出两个树杈。通常两个子结点被称为左子结点和右子结点。比如:

其中,A就是整个二叉树的根结点,那么B就是A的左子结点,C就是A的右子结点。每一个结点,我们可以用Java语言这样实现:

/**
* 二叉树结点
*/
public class TreeNode {
	public char value;
	/**
	* 左子树
	*/
	public TreeNode left;
	/**
	* 右子树
	*/
	public TreeNode right;
}

三种遍历方式

在解题之前,先把前序遍历、中序遍历、后序遍历这三种遍历方式说清楚,为之后的解题打下良好的基础。

前序遍历

前序遍历就是,先访问结点,再访问子结点,再访问子结点。上图二叉树的前序遍历的顺序就是ABDCEGHF。我们可以用Java语言这样实现:

public void preOrder(TreeNode biTree) {
	System.out.println(biTree.value);
	if(biTree.left != null) {
		preOrder(biTree.left);
	}
	if(biTree.right != null) {
		preOrder(biTree.right);
	}
}

中序遍历

中序遍历就是,先访问子结点,再访问结点,再访问子结点。上图二叉树的中序遍历的顺序就是DBAGEHCF。我们可以用Java语言这样实现:

public void preOrder(TreeNode biTree) {
	if(biTree.left != null) {
		preOrder(biTree.left);
	}
	System.out.println(biTree.value);
	if(biTree.right != null) {
		preOrder(biTree.right);
	}
}

后序遍历

后序遍历就是,先访问子结点,再访问子结点,再访问结点。上图二叉树的后序遍历的顺序就是DBGHEFCA。我们可以用Java语言这样实现:

public void preOrder(TreeNode biTree) {
	if(biTree.left != null) {
		preOrder(biTree.left);
	}
	System.out.println(biTree.value);
	if(biTree.right != null) {
		preOrder(biTree.right);
	}
}

经过上面的叙述,可以总结出:前序遍历、中序遍历、后序遍历三种遍历中的“前”、“中”、“后”都是指根结点的访问顺序,“前”则是先访问根结点,“中”则是在左右中间访问根结点,,“后”则是最后访问根结点。

已知前中序遍历顺序,求后序遍历顺序

扯了这么多,还是回到刚刚的第一道面试题上:

已知二叉树的前序遍历顺序为ABDCEGHF,中序遍历顺序为DBAGEHCF,求该二叉树的后序遍历。

我们的解题思路是,先根据前中序遍历顺序重新构造出这个二叉树,再根据二叉树写出后序遍历顺序。

重构二叉树

前序遍历(ABDCEGHF)中的第一个结点A肯定为根结点,那么在中序遍历(DBAGEHCF)中,A结点的左边(DB)肯定为结点A的左子树,A结点的右边(GEHCF)肯定为结点A的右子树,初步判断二叉树是这样的:

再看A的左子树(DB),在前序遍历(ABDCEGHF)中,B在最前面,说明B为该子树的根结点,再看中序遍历(DBAGEHCF),B的左边(D)肯定为A的左子树,B的右边(无)肯定为A的右子树,初步判断二叉树是这样的:

再看A的右子树(GEHCF),在前序遍历(ABDCEGHF)中,C在最前面,说明C为该子树的根结点,再看中序遍历(DBAGEHCF),C的左边(GEH)肯定为C的左子树,C的右边(F)肯定为C的右子树,初步判断二叉树是这样的:

再看C的左子树(GEH),在前序遍历(ABDCEGHF)中,E在最前面,说明E为该子树的根结点,再看中序遍历(DBAGEHCF),E的左边(G)肯定为E的左子树,E的右边(H)肯定为E的右子树,可以最终判断出二叉树是这样的:

写出后序遍历顺序

这个步骤就比较容易了,根据二叉树得到的后序遍历顺序就是:DBGHEFCA

已知中后序遍历顺序,求前序遍历顺序

扯了这么多,还是回到刚刚的第一道面试题上:

已知二叉树的中序遍历顺序为DBAGEHCF,后序遍历顺序为DBGHEFCA,求该二叉树的前序遍历。

我们的解题思路是,先根据中后序遍历顺序重新构造出这个二叉树,再根据二叉树写出前序遍历顺序。

重构二叉树

后序遍历(DBGHEFCA)中的最后一个结点A肯定为根结点,那么在中序遍历(DBAGEHCF)中,A结点的左边(DB)肯定为结点A的左子树,A结点的右边(GEHCF)肯定为结点A的右子树,初步判断二叉树是这样的:

再看A的左子树(DB),在后序遍历(DBGHEFCA)中,B在最后面,说明B为该子树的根结点,再看中序遍历(DBAGEHCF),B的左边(D)肯定为A的左子树,B的右边(无)肯定为A的右子树,初步判断二叉树是这样的:

再看A的右子树(GEHCF),在后序遍历(DBGHEFCA)中,C在最后面,说明C为该子树的根结点,再看中序遍历(DBAGEHCF),C的左边(GEH)肯定为C的左子树,C的右边(F)肯定为C的右子树,初步判断二叉树是这样的:

再看C的左子树(GEH),在后序遍历(DBGHEFCA)中,E在最后面,说明E为该子树的根结点,再看中序遍历(DBAGEHCF),E的左边(G)肯定为E的左子树,E的右边(H)肯定为E的右子树,可以最终判断出二叉树是这样的:

写出前序遍历顺序

这个步骤就比较容易了,根据二叉树得到的前序遍历顺序就是:ABDCEGHF

点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消