为了账号安全,请及时绑定邮箱和手机立即绑定

TensorFlow 卷积神经网络之猫狗识别

标签:
人工智能

这份数据集来源于Kaggle,数据集有12500只猫和12500只狗。在这里简单介绍下整体思路  
1. 处理数据
2. 设计神经网络
3. 进行训练测试

1. 数据处理

将图片数据处理为 tf 能够识别的数据格式,并将数据设计批次。

  1. 第一步get_files() 方法读取图片,然后根据图片名,添加猫狗 label,然后再将 image和label 放到 数组中,打乱顺序返回

  2. 将第一步处理好的图片 和label 数组 转化为 tensorflow 能够识别的格式,然后将图片裁剪和补充进行标准化处理,分批次返回。

import tensorflow as tfimport os 
import numpy as npdef get_files(file_dir):
    cats = []
    label_cats = []
    dogs = []
    label_dogs = []    for file in os.listdir(file_dir):
        name = file.split(sep='.')        if 'cat' in name[0]:
            cats.append(file_dir + file)
            label_cats.append(0)        else:            if 'dog' in name[0]:
                dogs.append(file_dir + file)
                label_dogs.append(1)
        image_list = np.hstack((cats,dogs))
        label_list = np.hstack((label_cats,label_dogs))            # print('There are %d cats\nThere are %d dogs' %(len(cats), len(dogs)))
            # 多个种类分别的时候需要把多个种类放在一起,打乱顺序,这里不需要

    # 把标签和图片都放倒一个 temp 中 然后打乱顺序,然后取出来
    temp = np.array([image_list,label_list])
    temp = temp.transpose()    # 打乱顺序
    np.random.shuffle(temp)    # 取出第一个元素作为 image 第二个元素作为 label
    image_list = list(temp[:,0])
    label_list = list(temp[:,1])
    label_list = [int(i) for i in label_list]  
    return image_list,label_list# 测试 get_files# imgs , label = get_files('/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/testImg/')# for i in imgs:#   print("img:",i)# for i in label:#   print('label:',i)# 测试 get_files end# image_W ,image_H 指定图片大小,batch_size 每批读取的个数 ,capacity队列中 最多容纳元素的个数def get_batch(image,label,image_W,image_H,batch_size,capacity):
    # 转换数据为 ts 能识别的格式
    image = tf.cast(image,tf.string)
    label = tf.cast(label, tf.int32)    # 将image 和 label 放倒队列里 
    input_queue = tf.train.slice_input_producer([image,label])
    label = input_queue[1]    # 读取图片的全部信息
    image_contents = tf.read_file(input_queue[0])    # 把图片解码,channels =3 为彩色图片, r,g ,b  黑白图片为 1 ,也可以理解为图片的厚度
    image = tf.image.decode_jpeg(image_contents,channels =3)    # 将图片以图片中心进行裁剪或者扩充为 指定的image_W,image_H
    image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)    # 对数据进行标准化,标准化,就是减去它的均值,除以他的方差
    image = tf.image.per_image_standardization(image)    # 生成批次  num_threads 有多少个线程根据电脑配置设置  capacity 队列中 最多容纳图片的个数  tf.train.shuffle_batch 打乱顺序,
    image_batch, label_batch = tf.train.batch([image, label],batch_size = batch_size, num_threads = 64, capacity = capacity)    # 重新定义下 label_batch 的形状
    label_batch = tf.reshape(label_batch , [batch_size])    # 转化图片
    image_batch = tf.cast(image_batch,tf.float32)    return  image_batch, label_batch# test get_batch# import matplotlib.pyplot as plt# BATCH_SIZE = 2# CAPACITY = 256  # IMG_W = 208# IMG_H = 208# train_dir = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/testImg/'# image_list, label_list = get_files(train_dir)# image_batch, label_batch = get_batch(image_list, label_list, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)# with tf.Session() as sess:#    i = 0#    #  Coordinator  和 start_queue_runners 监控 queue 的状态,不停的入队出队#    coord = tf.train.Coordinator()#    threads = tf.train.start_queue_runners(coord=coord)#    # coord.should_stop() 返回 true 时也就是 数据读完了应该调用 coord.request_stop()#    try: #        while not coord.should_stop() and i<1:#            # 测试一个步#            img, label = sess.run([image_batch, label_batch])#            for j in np.arange(BATCH_SIZE):#                print('label: %d' %label[j])#                # 因为是个4D 的数据所以第一个为 索引 其他的为冒号就行了#                plt.imshow(img[j,:,:,:])#                plt.show()#            i+=1#    # 队列中没有数据#    except tf.errors.OutOfRangeError:#        print('done!')#    finally:#        coord.request_stop()#    coord.join(threads)
   # sess.close()

2. 设计神经网络

利用卷积神经网路处理,网络结构为

# conv1   卷积层 1# pooling1_lrn  池化层 1# conv2  卷积层 2# pooling2_lrn 池化层 2# local3 全连接层 1# local4 全连接层 2# softmax 全连接层 31234567
#coding=utf-8  import tensorflow as tf  

def inference(images, batch_size, n_classes):  

    with tf.variable_scope('conv1') as scope: 
     # 卷积盒的为 3*3 的卷积盒,图片厚度是3,输出是16个featuremap
        weights = tf.get_variable('weights',  
                                  shape=[3, 3, 3, 16],  
                                  dtype=tf.float32,  
                                  initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))  
        biases = tf.get_variable('biases',  
                                 shape=[16],  
                                 dtype=tf.float32,  
                                 initializer=tf.constant_initializer(0.1))  
        conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')  
        pre_activation = tf.nn.bias_add(conv, biases)  
        conv1 = tf.nn.relu(pre_activation, name=scope.name)  

    with tf.variable_scope('pooling1_lrn') as scope:  
            pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')  
            norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')  

    with tf.variable_scope('conv2') as scope:  
                weights = tf.get_variable('weights',  
                                          shape=[3, 3, 16, 16],  
                                          dtype=tf.float32,  
                                          initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))  
                biases = tf.get_variable('biases',  
                                         shape=[16],  
                                         dtype=tf.float32,  
                                         initializer=tf.constant_initializer(0.1))  
                conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')  
                pre_activation = tf.nn.bias_add(conv, biases)  
                conv2 = tf.nn.relu(pre_activation, name='conv2')  

    # pool2 and norm2  
    with tf.variable_scope('pooling2_lrn') as scope:  
        norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')  
        pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')  

    with tf.variable_scope('local3') as scope:  
        reshape = tf.reshape(pool2, shape=[batch_size, -1])  
        dim = reshape.get_shape()[1].value  
        weights = tf.get_variable('weights',  
                                  shape=[dim, 128],  
                                  dtype=tf.float32,  
                                  initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  
        biases = tf.get_variable('biases',  
                                 shape=[128],  
                                 dtype=tf.float32,  
                                 initializer=tf.constant_initializer(0.1))  
    local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)  

    # local4  
    with tf.variable_scope('local4') as scope:  
        weights = tf.get_variable('weights',  
                                  shape=[128, 128],  
                                  dtype=tf.float32,  
                                  initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  
        biases = tf.get_variable('biases',  
                                 shape=[128],  
                                 dtype=tf.float32,  
                                 initializer=tf.constant_initializer(0.1))  
        local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')  

    # softmax  
    with tf.variable_scope('softmax_linear') as scope:  
        weights = tf.get_variable('softmax_linear',  
                                  shape=[128, n_classes],  
                                  dtype=tf.float32,  
                                  initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))  
        biases = tf.get_variable('biases',  
                                 shape=[n_classes],  
                                 dtype=tf.float32,  
                                 initializer=tf.constant_initializer(0.1))  
        softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')  

    return softmax_linear  



def losses(logits, labels):  
    with tf.variable_scope('loss') as scope:  
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits \
                        (logits=logits, labels=labels, name='xentropy_per_example')  
        loss = tf.reduce_mean(cross_entropy, name='loss')  
        tf.summary.scalar(scope.name + '/loss', loss)  
    return loss  

def trainning(loss, learning_rate):  
    with tf.name_scope('optimizer'):  
        optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate)  
        global_step = tf.Variable(0, name='global_step', trainable=False)  
        train_op = optimizer.minimize(loss, global_step= global_step)  
    return train_op  

def evaluation(logits, labels):  
    with tf.variable_scope('accuracy') as scope:  
        correct = tf.nn.in_top_k(logits, labels, 1)  
        correct = tf.cast(correct, tf.float16)  
        accuracy = tf.reduce_mean(correct)  
        tf.summary.scalar(scope.name + '/accuracy', accuracy)  
    return accuracy

3. 训练数据,并将训练的模型存储

import os  
import numpy as np  
import tensorflow as tf  
import input_data     
import model  


N_CLASSES = 2  # 2个输出神经元,[1,0] 或者 [0,1]猫和狗的概率IMG_W = 208  # 重新定义图片的大小,图片如果过大则训练比较慢  IMG_H = 208  BATCH_SIZE = 32  #每批数据的大小CAPACITY = 256  MAX_STEP = 15000 # 训练的步数,应当 >= 10000learning_rate = 0.0001 # 学习率,建议刚开始的 learning_rate <= 0.0001def run_training():  

    # 数据集
    train_dir = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/img/'   #My dir--20170727-csq  
    #logs_train_dir 存放训练模型的过程的数据,在tensorboard 中查看 
    logs_train_dir = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/saveNet/'  

    # 获取图片和标签集
    train, train_label = input_data.get_files(train_dir)  
    # 生成批次
    train_batch, train_label_batch = input_data.get_batch(train,  
                                                          train_label,  
                                                          IMG_W,  
                                                          IMG_H,  
                                                          BATCH_SIZE,   
                                                          CAPACITY)    # 进入模型
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES) 
    # 获取 loss 
    train_loss = model.losses(train_logits, train_label_batch)    # 训练 
    train_op = model.trainning(train_loss, learning_rate)    # 获取准确率 
    train__acc = model.evaluation(train_logits, train_label_batch)  
    # 合并 summary
    summary_op = tf.summary.merge_all()  
    sess = tf.Session()    # 保存summary
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)  
    saver = tf.train.Saver()  

    sess.run(tf.global_variables_initializer())  
    coord = tf.train.Coordinator()  
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)  

    try:  
        for step in np.arange(MAX_STEP):  
            if coord.should_stop():  
                    break  
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc])  

            if step % 50 == 0:  
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %(step, tra_loss, tra_acc*100.0))  
                summary_str = sess.run(summary_op)  
                train_writer.add_summary(summary_str, step)  

            if step % 2000 == 0 or (step + 1) == MAX_STEP:  
                # 每隔2000步保存一下模型,模型保存在 checkpoint_path 中
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')  
                saver.save(sess, checkpoint_path, global_step=step)  

    except tf.errors.OutOfRangeError:  
        print('Done training -- epoch limit reached')  
    finally:  
        coord.request_stop()
    coord.join(threads)  
    sess.close()  

# trainrun_training()

4. 训练后的模型应该如何使用

逻辑:
1. 从网上下载了十几张猫和狗的图片,用于检验训练好的模型。
2. 处理下载的图片
3. 加载模型
4. 将图片输入模型进行检验

代码如下:

#coding=utf-8  import tensorflow as tf 
from PIL import Image  
import matplotlib.pyplot as pltimport input_data 
import numpy as npimport modelimport os 

#从指定目录中选取一张图片 def get_one_image(train): 
    files = os.listdir(train)
    n = len(files)
    ind = np.random.randint(0,n)
    img_dir = os.path.join(train,files[ind])  
    image = Image.open(img_dir)  
    plt.imshow(image)
    plt.show()
    image = image.resize([208, 208])  
    image = np.array(image)    return image  


def evaluate_one_image():  
    #存放的是我从百度下载的猫狗图片路径
    train = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/testImg/' 
    image_array = get_one_image(train)  

    with tf.Graph().as_default():  
        BATCH_SIZE = 1  # 因为只读取一副图片 所以batch 设置为1
        N_CLASSES = 2  # 2个输出神经元,[1,0] 或者 [0,1]猫和狗的概率
        # 转化图片格式
        image = tf.cast(image_array, tf.float32)  
        # 图片标准化
        image = tf.image.per_image_standardization(image)        # 图片原来是三维的 [208, 208, 3] 重新定义图片形状 改为一个4D  四维的 tensor
        image = tf.reshape(image, [1, 208, 208, 3])  
        logit = model.inference(image, BATCH_SIZE, N_CLASSES)  
        # 因为 inference 的返回没有用激活函数,所以在这里对结果用softmax 激活
        logit = tf.nn.softmax(logit)  

        # 用最原始的输入数据的方式向模型输入数据 placeholder
        x = tf.placeholder(tf.float32, shape=[208, 208, 3])  

        # 我门存放模型的路径
        logs_train_dir = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/saveNet/'   
        # 定义saver 
        saver = tf.train.Saver()  

        with tf.Session() as sess:  

            print("从指定的路径中加载模型。。。。")            # 将模型加载到sess 中 
            ckpt = tf.train.get_checkpoint_state(logs_train_dir)  
            if ckpt and ckpt.model_checkpoint_path:  
                global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]  
                saver.restore(sess, ckpt.model_checkpoint_path)  
                print('模型加载成功, 训练的步数为 %s' % global_step)  
            else:  
                print('模型加载失败,,,文件没有找到')  
            # 将图片输入到模型计算
            prediction = sess.run(logit, feed_dict={x: image_array})            # 获取输出结果中最大概率的索引
            max_index = np.argmax(prediction)  
            if max_index==0:  
                print('猫的概率 %.6f' %prediction[:, 0])  
            else:  
                print('狗的概率 %.6f' %prediction[:, 1]) 
# 测试evaluate_one_image()

/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/testImg/ 存放的是我从百度下载的猫狗图片
这里写图片描述

执行结果:
因为从testimg 中选取图片是随机的,所以每次执行的结果不同

从指定的路径中加载模型。。。。
模型加载成功, 训练的步数为 11999狗的概率 0.964047[Finished in 6.8s]

(1-3部分)代码地址:https://github.com/527515025/My-TensorFlow-tutorials/blob/master/%E7%8C%AB%E7%8B%97%E8%AF%86%E5%88%AB/evaluateCatOrDog.py

(第4部分)完整代码地址:
https://github.com/527515025/My-TensorFlow-tutorials/tree/master/%E7%8C%AB%E7%8B%97%E8%AF%86%E5%88%AB

 训练数据集:

链接: https://pan.baidu.com/s/1o9yfRCI 密码: mvge

原文出处


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消