为了账号安全,请及时绑定邮箱和手机立即绑定

LeetCode 104. 二叉树的最大深度 | Python

标签:
Python 算法

104. 二叉树的最大深度


题目


给定一个二叉树,找出其最大深度。

二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。

说明: 叶子节点是指没有子节点的节点。

示例:

给定二叉树 [3,9,20,null,null,15,7],

    3
   / \
  9  20
    /  \
   15   7
返回它的最大深度 3 。

解题思路


思路:递归、广度优先搜索

题目中提示,【二叉树的深度为根节点到最远叶子节点的最长路径上的节点数】。那么在这里,我们考虑从递归和广度优先搜索的思路去解决此问题。下面先从递归的思路,对问题进行分析解决。

递归

根据题目的提示,我们知道,二叉树的深度是跟它的左右子树的深度有关。

前面说,二叉树的深度是根节点到最远叶子节点的最长路径上的节点数,那么也就说当我们得到左子树和右子树的最大深度时,只要取两者中较大深度的加上根节点的深度就是整个二叉树的深度。那么也就是说:二叉树的最大深度 = 左右子树最大深度较大的深度 + 根节点的高度。如下面的式子:

max_depth = max(left_tree_depth, right_tree_depth) + 1

那么现在的问题就是如何去求左右子树的最大深度,在这里,两者的计算方式是相同的。我们可以递归去计算左右子树的最大深度,当遇到叶子节点时,退出递归。

具体的代码见【代码实现 # 递归】

广度优先搜索

这里,我们也可以使用广度优先搜索的思路来解决问题。在这里,我们需要添加一个辅助队列。我们将当前层的所有节点都存入这个辅助队列中。

在这里需要注意一点,当我们准备搜索下一层时,这里需要将队列中当前层的所有节点都进行出队,然后让这些节点往下层搜索。

那么,如果当前层的所有节点都出列,队列还非空,那么说明下一层还有节点。循环直至队列为空,定义变量 depth,每层搜索的时候维护更新该值,那么最终,depth 就是我们要求的二叉树最大深度。

具体的代码见【代码实现 # 广度优先搜索】

代码实现


# 递归
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def maxDepth(self, root: TreeNode) -> int:
        # 终止条件
        if not root:
            return 0

        # 递归计算左右子树的最大深度
        left_tree_depth = self.maxDepth(root.left)
        right_tree_depth = self.maxDepth(root.right)

        return max(left_tree_depth, right_tree_depth) + 1

# 广度优先搜索
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def maxDepth(self, root: TreeNode) -> int:
        # 处理特殊情况
        if not root:
            return 0

        from collections import deque
        # 辅助队列
        queue = deque()

        # 记录二叉树深度,维护更新,
        depth = 0

        queue.append(root)

        while queue:
            # 当前层所有节点出列,往下搜索
            size = len(queue)

            for i in range(size):
                node = queue.popleft()
                if node.left:
                    queue.append(node.left)
                if node.right:
                    queue.append(node.right)

            depth += 1
        
        return depth

实现结果


实现结果 # 递归

实现结果 | 递归

实现结果 # 广度优先搜索

实现结果 | 广度优先搜索

点击查看更多内容
1人点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消