为了账号安全,请及时绑定邮箱和手机立即绑定

到底什么才是真正的空间复杂度?

前言

本篇文章收录于专辑:http://dwz.win/HjK,点击解锁更多数据结构与算法的知识。

你好,我是彤哥,一个每天爬二十六层楼还不忘读源码的硬核男人。

上一节,我们一起学习了复杂度分析的套路和常见的复杂度。

但是,我们的案例基本都是以时间复杂度为主,很少接触到空间复杂度。

那么,到底什么才是真正的空间复杂度呢?在空间与时间发生冲突时又该如何权衡呢?

本节,我们就来解决这两个问题。

来个例子

现在有一个算法是这样的,给定一个数组,将数组中每个元素都乘以2返回,我实现了下面两种形式:

private static int[] multi1(int[] array) {
    int[] newArray = new int[array.length];
    for (int i = 0; i < array.length; i++) {
        newArray[i] = array[i] * 2;
    }
    return newArray;
}

private static int[] multi2(int[] array) {
    for (int i = 0; i < array.length; i++) {
        array[i] = array[i] * 2;
    }
    return array;
}

暂且不论这两个算法孰好孰坏,你来猜猜他们的空间复杂度各是多少?

你可能会说第一个算法的空间复杂度为O(n),第二个算法的空间复杂度为O(1)。

错!两个算法的空间复杂度都是O(n)。

也不能说你完全错了,因为大部分书籍或者资料都弄错了。

是时候了解真正的空间复杂度了。

空间复杂度与额外空间复杂度

空间复杂度,是指一个算法运行的过程占用的空间,这个空间包括输入参数的占用空间和额外申请的空间。

所以,针对上面两个算法:

  • 第一个算法,输入参数n,额外空间n,两者相加为2n,去除常数项,空间复杂度为O(n);
  • 第二个算法,输入参数n,额外空间0,两者相加为n,空间复杂度为O(n)。

可以看到,使用空间复杂度很难判断这两个算法的好坏,所以,诞生了另一个概念——额外空间复杂度。

额外空间复杂度,是指一个算法运行过程中额外申请的空间。

使用额外空间复杂度,针对上面两个算法:

  • 第一个算法,额外空间为n,额外空间复杂度为O(n);
  • 第二个算法,额外空间为0,额外空间复杂度为O(1);

似乎没见过有O(0)这种写法。

可以看到,使用额外空间复杂度能够很轻易地判断两个算法的好坏(从空间占用的角度)。

所以,是时候纠正错误的概念了,以后与人交流的时候请使用“额外空间复杂度”这个概念。

时间与空间的权衡

时间与空间往往是一组纠缠在一起的概念,就像很多小说中写的一样,主角最终领悟了时空法则,成为了最强者,小说结束。

在数据结构与算法中也是一样,时间与空间往往同时出现,而且经常朝着相反的方向运动。

比如,对于排序算法:

  • 冒泡排序,时间复杂度O(n^2),空间复杂度O(1)
  • 归并排序,时间复杂度O(nlogn),空间复杂度O(n)

所以,有两种思想:以时间换空间,以空间换时间。

那么,哪种算法更好呢?

我认为,如果有时间、空间同时比较小的为最好,退而求其次,我选择以空间换时间,毕竟,随着计算机硬件技术地不断发展,空间越来越不值钱,而时间却越来越值钱,所以,以空间换时间也是一种常用的思想,在我们后续的课程中会出现大量以空间换时间的案例。

想知道冒泡排序和归并排序算法的复杂度如何计算吗?来呀,关注我吧。

后记

本节,我们从一个小例子入手,分析了两种算法的空间复杂度,并引出空间复杂度的真身——额外空间复杂度,最后,通过对比冒泡排序和归并排序的时间复杂度和空间复杂度,得出了以空间换时间的思想。

到这里,关于复杂度相关的章节就写完了,从下一节开始,我们将进入常用数据结构与算法的学习中,敬请期待。

P.S. 下周将进行晋升答辩,会停更几天,敬请谅解。

点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
JAVA开发工程师
手记
粉丝
3772
获赞与收藏
679

关注作者,订阅最新文章

阅读免费教程

  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消