为了账号安全,请及时绑定邮箱和手机立即绑定

LeetCode 347: 前 K 个高频元素 Top K Frequent Elements

标签:
Java Python

题目:

给定一个非空的整数数组,返回其中出现频率前 K 高的元素。

Given a non-empty array of integers, return the K most frequent elements.

示例 1:

输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]

示例 2:

输入: nums = [1], k = 1
输出: [1]

说明:

  • 你可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。
  • 你的算法的时间复杂度必须优于 O(n log n) , n 是数组的大小。

Note:

  • You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
  • Your algorithm’s time complexity must be better than O(n log n), where n is the array’s size.

解题思路:

​ 这道题大致解题步骤是: 频率统计 --> 按频率排序 --> 返回频率最高的前 K 个元素

注意点:

  • 题目要求时间复杂度优于 O(n log n)

首先频率统计最优雅的方法应该是借助哈希映射, key 为元素, value 为频率. 其时间复杂度为 O(n)

重点是返回前 K 个频率最高的元素, 所以另一种更简单的方法是直接借助 堆(优先队列) 这种数据结构

维护一个 大小为 K 的堆来动态存储前 K 个频率最高的元素, 其时间复杂度为 O(n)

代码:

Java:

class Solution {
    public List<Integer> topKFrequent(int[] nums, int k) {
        // 建立哈希映射
        HashMap<Integer, Integer> count = new HashMap();
        // 频率统计
        for (int n : nums) count.put(n, count.getOrDefault(n, 0) + 1);

        // 建立优先队列, 借助 Lambda 表达式
        PriorityQueue<Integer> heap = new PriorityQueue<Integer>((a, b) -> count.get(a) - count.get(b));
        // 也可以借助 compare 比较函数
        // PriorityQueue<Integer> heap = new PriorityQueue<>(new Comparator<Integer>() {
        //     @Override
        //     public int compare(Integer a, Integer b) {
        //         return map.get(a) - map.get(b);
        //     }
        // });
        
        // 维护一个大小为 k 的已排序的优先队列
        for (int n : count.keySet()) {
            heap.add(n);
            if (heap.size() > k)
                heap.poll();
        }

        // 返回结果
        List<Integer> top_k = new LinkedList();
        while (!heap.isEmpty())
            top_k.add(heap.poll());
        return top_k;
    }
}

Python:

Python 基础库里的 heapq 堆数据结构, 有两个函数:

  • nlargest
  • nsmallest

例如

heapq.nsmallest(n, nums)

表示取迭代器 nums 前 n 个最大元素, 该函数还能接受一个 key 关键字,以应对复杂的数据结构

结合 collections.Counter() 频率统计函数, 两行代码即可解决

class Solution:
    def topKFrequent(self, nums, k):
        """
        :type nums: List[int]
        :type k: int
        :rtype: List[int]
        """ 
        count = collections.Counter(nums)   
        return heapq.nlargest(k, count.keys(), key=count.get) 

注意体会关键字参数的作用: key=count.get

点击查看更多内容
1人点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
算法工程师
手记
粉丝
17
获赞与收藏
43

关注作者,订阅最新文章

阅读免费教程

感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消