为了账号安全,请及时绑定邮箱和手机立即绑定

力扣96——不同的二叉搜索树

原题

给定一个整数 n,求以 1 … n 为节点组成的二叉搜索树有多少种?

示例:

输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:

   1         3     3      2     1
    \        /     /      / \      \
    3      2     1     1   3      2
    /      /       \                    \
   2     1         2                    3

解题

这道题看到的第一眼,就和之前的格雷编码一样,又想用动态规划,每次都是遍历所有情况去检查是否有效,但感觉时间复杂度会很高,找找看有没有什么更高效的做法。

所谓高效,也就是寻找规律了,最好的是可以递推,下一次运算可以利用之前的结果,而本题就是用这种规律的。我们来试试 n 等于0、1、2、3的情况:

n = 0,只有1种。

n = 1,也只有1种。

n = 2,有2种
1           2
 \         /
   2    1

n = 3,有5种
   1         3     3      2     1
    \        /     /      / \      \
    3      2     1     1   3      2
    /      /       \                    \
   2     1         2                    3

让我们回想一下什么叫二叉搜索树,就是针对每个节点,其左子树中所有节点都比它小,其右子树中所有节点都比它大。

再想一下,如果我们针对根选中的情况下,左右子树节点的个数其实也已经定下来了,那么假设同样是 3 个节点,"1、2、3"和"4、5、6"可以组成二叉搜索树,从数量上讲是一样的,因为大小关系没有变。

因此,我们可以说,针对二叉搜索树,其不用考虑值具体是多少,只需要考虑其大小关系即可,那么这就符合上面我所希望的场景了,下一次的运算可以利用之前的结果。

以这道题来说,其具体规律就是:

  1. 从 1 开始遍历直至 n,以每个节点作为根节点,这样就能计算出左右各个子树的所有节点数。
  2. 当我们知道了个数,也就可以利用之前计算的结果,获得左右子树可能的情况,两者相乘,也就是在当前根的情况,所有二叉搜索树的情况。
  3. 将所有根节点的总计算出的数量做累加,也就得出了当前节点数的总情况。

让我们看看代码:

class Solution {
    public int numTrees(int n) {
		    // 存放中间结果
        int[] result = new int[n + 1];
        result[0] = 1;
        result[1] = 1;

        for (int i = 2; i <= n; i++) {
            int count = 0;
            for (int j = 1; j <= i; j++) {
                // 左子树总节点数 + 右子树总节点数
                count += (result[j - 1] * result[i - j]);
            }
            result[i] = count;
        }

        return result[n];
    }
}

提交OK, 执行用时:0 ms,内存消耗:33.2 MB

总结

以上就是这道题目我的解答过程了,不知道大家是否理解了。这道题目只要利用规律,构造递推关系,也就能解决了。

有兴趣的话可以访问我的博客或者关注我的公众号、头条号,说不定会有意外的惊喜。

点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
JAVA开发工程师
手记
粉丝
2
获赞与收藏
16

关注作者,订阅最新文章

阅读免费教程

  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消