为了账号安全,请及时绑定邮箱和手机立即绑定

Redis的内存回收原理,及内存过期淘汰策略详解

标签:
Java Redis

Redis内存回收机制

Redis的内存回收主要围绕以下两个方面:

1.Redis过期策略:删除过期时间的key值

2.Redis淘汰策略:内存使用到达maxmemory上限时触发内存淘汰数据

Redis的过期策略和内存淘汰策略不是一件事,实际研发中不要弄混淆了,下面会完整的介绍两者。

Redis过期策略

过期策略通常有以下三种:

1.定时过期

每个设置过期时间的key都需要创建一个定时器,到过期时间就会立即清除。该策略可以立即清除过期的数据,对内存很友好;但是会占用大量的CPU资源去处理过期的数据,从而影响缓存的响应时间和吞吐量。

2.惰性过期

只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况可能出现大量的过期key没有再次被访问,从而不会被清除,占用大量内存。

3.定期过期

每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前两者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。

Redis中同时使用了惰性过期和定期过期两种过期策略

Redis淘汰策略

1.简介

Redis的内存淘汰策略,是指当内存使用达到maxmemory极限时,需要使用LAU淘汰算法来决定清理掉哪些数据,以保证新数据的存入。

2、LRU算法

Redis默认情况下就是使用LRU策略算法。

LRU算法(least RecentlyUsed),最近最少使用算法,也就是说默认删除最近最少使用的键。

但是一定要注意一点!redis中并不会准确的删除所有键中最近最少使用的键,而是随机抽取3个键,删除这三个键中最近最少使用的键。

那么3这个数字也是可以可以设置采样的大小,如果设置为10,那么效果会更好,不过也会耗费更多的CPU资源。对应位置是配置文件中的maxmeory-samples。

3.缓存清理配置

maxmemory用来设置redis存放数据的最大的内存大小,一旦超出这个内存大小之后,就会立即使用LRU算法清理掉部分数据。

对于64 bit的机器,如果maxmemory设置为0,那么就默认不限制内存的使用,直到耗尽机器中所有的内存为止;,但是对于32 bit的机器,有一个隐式的闲置就是3GB

4.Redis数据淘汰策略

maxmemory-policy,可以设置内存达到最大闲置后,采取什么策略来处理。

对应的淘汰策略规则如下:

file

image.png

**1)noeviction:**当内存不足以容纳新写入数据时,新写入操作会报错。

**2)allkeys-lru:**当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key。

**3)allkeys-random:**当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。

**4)volatile-lru:**当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。

**5)volatile-random:**当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。

**6)volatile-ttl:**当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。

5.缓存清理的流程

1)客户端执行数据写入操作

2)redis server接收到写入操作之后,检查maxmemory的限制,如果超过了限制,那么就根据对应的policy清理掉部分数据

3)写入操作完成执行。

总结

redis的内存淘汰策略用于处理内存不足时的需要申请额外空间的数据,内存淘汰策略的选取并不会影响过期的key的处理。过期策略用于处理过期的缓存数据。

欢迎添加小编的Java学习群,不管你是小白还是大牛,小编我都欢迎,不定期分享干货,包括小编自己整理的一份2019年最新的Java资料和0基础入门教程视频,欢迎初学和进阶中的小伙伴。在不忙的时间我会给大家解惑

file

本文由博客一文多发平台 OpenWrite 发布!

点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消