1. 标准化(Z-Score),或者去除均值和方差缩放
公式为:(X-mean)/std 计算时对每个属性/每列分别进行。
将数据按期属性(按列进行)减去其均值,并处以其方差。得到的结果是,对于每个属性/每列来说所有数据都聚集在0附近,方差为1。
实现时,有两种不同的方式:
1.1 使用sklearn.preprocessing.scale()函数:
该语言能直接将给定的数据进行。
>>> from sklearn import preprocessing >>> import numpy as np >>> X = np.array([[ 1., -1., 2.], ... [ 2., 0., 0.], ... [ 0., 1., -1.]]) >>> X_scaled = preprocessing.scale(X) >>> X_scaled array([[ 0. ..., -1.22..., 1.33...], [ 1.22..., 0. ..., -0.26...], [-1.22..., 1.22..., -1.06...]]) >>>#处理后数据的均值和方差 >>> X_scaled.mean(axis=0) array([ 0., 0., 0.]) >>> X_scaled.std(axis=0) array([ 1., 1., 1.])
1.2 使用sklearn.preprocessing.StandardScaler类
使用该类的好处在于可以保存训练集中的参数(均值、方差)直接使用其对象转换测试集数据。
>>> scaler = preprocessing.StandardScaler().fit(X) >>> scaler StandardScaler(copy=True, with_mean=True, with_std=True) >>> scaler.mean_ array([ 1. ..., 0. ..., 0.33...]) >>> scaler.std_ array([ 0.81..., 0.81..., 1.24...]) >>> scaler.transform(X) array([[ 0. ..., -1.22..., 1.33...], [ 1.22..., 0. ..., -0.26...], [-1.22..., 1.22..., -1.06...]]) >>>#可以直接使用训练集对测试集数据进行转换 >>> scaler.transform([[-1., 1., 0.]]) array([[-2.44..., 1.22..., -0.26...]])
2. 将属性缩放到一个指定范围
除了上述介绍的方法之外,另一种常用的方法是将属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现。
使用这种方法的目的包括:
1、对于方差非常小的属性可以增强其稳定性。
2、维持稀疏矩阵中为0的条目。
>>> X_train = np.array([[ 1., -1., 2.], ... [ 2., 0., 0.], ... [ 0., 1., -1.]]) ... >>> min_max_scaler = preprocessing.MinMaxScaler() >>> X_train_minmax = min_max_scaler.fit_transform(X_train) >>> X_train_minmax array([[ 0.5 , 0. , 1. ], [ 1. , 0.5 , 0.33333333], [ 0. , 1. , 0. ]]) >>> #将相同的缩放应用到测试集数据中 >>> X_test = np.array([[ -3., -1., 4.]]) >>> X_test_minmax = min_max_scaler.transform(X_test) >>> X_test_minmax array([[-1.5 , 0. , 1.66666667]]) >>> #缩放因子等属性 >>> min_max_scaler.scale_ array([ 0.5 , 0.5 , 0.33...]) >>> min_max_scaler.min_ array([ 0. , 0.5 , 0.33...])
当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min, max),此时应用的公式变为:
X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0)) X_scaled=X_std/(max-min)+min
3.正则化(Normalization)
正则化的过程是将每个样本缩放到单位范数(每个样本的范数为1),如果后面要使用如二次型(点积)或者其它核方法计算两个样本之间的相似性这个方法会很有用。
Normalization主要思想是对每个样本计算其p-范数,然后对该样本中每个元素除以该范数,这样处理的结果是使得每个处理后样本的p-范数(l1-norm,l2-norm)等于1。
p-范数的计算公式:||X||p=(|x1|^p+|x2|^p+...+|xn|^p)^1/p
该方法主要应用于文本分类和聚类中。例如,对于两个TF-IDF向量的l2-norm进行点积,就可以得到这两个向量的余弦相似性。
3.1 使用preprocessing.normalize()函数对指定数据进行转换:
>>> X = [[ 1., -1., 2.], ... [ 2., 0., 0.], ... [ 0., 1., -1.]] >>> X_normalized = preprocessing.normalize(X, norm='l2') >>> X_normalized array([[ 0.40..., -0.40..., 0.81...], [ 1. ..., 0. ..., 0. ...], [ 0. ..., 0.70..., -0.70...]])
3.2 可以使用processing.Normalizer()类实现对训练集和测试集的拟合和转换
>>> normalizer = preprocessing.Normalizer().fit(X) # fit does nothing >>> normalizer Normalizer(copy=True, norm='l2') >>> >>> normalizer.transform(X) array([[ 0.40..., -0.40..., 0.81...], [ 1. ..., 0. ..., 0. ...], [ 0. ..., 0.70..., -0.70...]]) >>> normalizer.transform([[-1., 1., 0.]]) array([[-0.70..., 0.70..., 0. ...]])
4. 向量的范数
4.1 文字表达
若 x为 n维向量,那么定义 p-范数为:
当p = 1,2,∞ 时候是比较常用的范数。
1-范数是向量各个分量绝对值之和。
2-范数(Euclid范数)就是通常所说的向量的长度。
∞-范数是通常所说的最大值范数,指的是向量各个分量绝对值的最大值。
4.2 数学表达:
令x= (x1,x2,...,xn).T
1-||x||1 = |x1|+|x2|+...+|xn|
2-||x||2 = (|x1|^2 + |x2|^2+...+|xn|^2)^1/2
∞-||x||∞ = max(|x1|,|x2|,...,|xn|)
4.3 结论:
||x||∞≤||x||2≤||x||1≤n1/2||x||2≤n||x||∞
共同学习,写下你的评论
评论加载中...
作者其他优质文章