为了账号安全,请及时绑定邮箱和手机立即绑定

使用ML.NET预测纽约出租车费

标签:
人工智能

有了上一篇《.NET Core玩转机器学习》打基础,这一次我们以纽约出租车费的预测做为新的场景案例,来体验一下回归模型。

场景概述


我们的目标是预测纽约的出租车费,乍一看似乎仅仅取决于行程的距离和时长,然而纽约的出租车供应商对其他因素,如额外的乘客数、信用卡而不是现金支付等,会综合考虑而收取不同数额的费用。纽约市官方给出了一份样本数据。

640?wx_fmt=png&wxfrom=5&wx_lazy=1

 

确定策略


为了能够预测出租车费,我们选择通过机器学习建立一个回归模型。使用官方提供的真实数据进行拟合,在训练模型的过程中确定真正能影响出租车费的决定性特征。在获得模型后,对模型进行评估验证,如果偏差在接受的范围内,就以这个模型来对新的数据进行预测。

 

解决方案


  • 创建项目

    看过上一篇文章的读者,就比较轻车熟路了,推荐使用Visual Studio 2017创建一个.NET Core的控制台应用程序项目,命名为TaxiFarePrediction。使用NuGet包管理工具添加对Microsoft.ML的引用。

    640?wx_fmt=png

    640?wx_fmt=png

  • 准备数据集

    下载训练数据集taxi-fare-train.csv和验证数据集taxi-fare-test.csv,数据集的内容类似为:

vendor_id,rate_code,passenger_count,trip_time_in_secs,trip_distance,payment_type,fare_amount
VTS,1,1,1140,3.75,CRD,15.5
VTS,1,1,480,2.72,CRD,10.0
VTS,1,1,1680,7.8,CSH,26.5
VTS,1,1,600,4.73,CSH,14.5
VTS,1,1,600,2.18,CRD,9.5

...

  • 对字段简单说明一下:

    字段名含义说明
    vendor_id供应商编号特征值
    rate_code比率码特征值
    passenger_count乘客人数特征值
    trip_time_in_secs行程时长特征值
    trip_distance行程距离特征值
    payment_type支付类型特征值
    fare_amount费用目标值

    在项目中添加一个Data目录,将两份数据集复制到该目录下,对文件属性设置“复制到输出目录”。

  • 640?wx_fmt=png
    640?wx_fmt=png

  • 定义数据类型和路径

    首先声明相关的包引用。

using System;
using Microsoft.ML.Models;
using Microsoft.ML.Runtime;
using Microsoft.ML.Runtime.Api;
using Microsoft.ML.Trainers;
using Microsoft.ML.Transforms;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;


在Main函数的上方定义一些使用到的常量。

const string DataPath = @".\Data\taxi-fare-test.csv";const string TestDataPath = @".\Data\taxi-fare-train.csv";const string ModelPath = @".\Models\Model.zip";const string ModelDirectory = @".\Models";


接下来定义一些使用到的数据类型,以及和数据集中每一行的位置对应关系。

public class TaxiTrip
{
    [Column(ordinal: "0")]
    public string vendor_id;
    [Column(ordinal: "1")]
    public string rate_code;
    [Column(ordinal: "2")]
    public float passenger_count;
    [Column(ordinal: "3")]
    public float trip_time_in_secs;
    [Column(ordinal: "4")]
    public float trip_distance;
    [Column(ordinal: "5")]
    public string payment_type;
    [Column(ordinal: "6")]
    public float fare_amount;
}
public class TaxiTripFarePrediction
{
    [ColumnName("Score")]
    public float fare_amount;
}
static class TestTrips
{
    internal static readonly TaxiTrip Trip1 = new TaxiTrip
    {
        vendor_id = "VTS",
        rate_code = "1",
        passenger_count = 1,
        trip_distance = 10.33f,
        payment_type = "CSH",
        fare_amount = 0 // predict it. actual = 29.5
    };
}

创建处理过程

创建一个Train方法,定义对数据集的处理过程,随后声明一个模型接收训练后的结果,在返回前把模型保存到指定的位置,以便以后直接取出来使用不需要再重新训练。

public static async Task<PredictionModel<TaxiTrip, TaxiTripFarePrediction>> Train()
{
    var pipeline = new LearningPipeline();
    pipeline.Add(new TextLoader<TaxiTrip>(DataPath, useHeader: true, separator: ","));
    pipeline.Add(new ColumnCopier(("fare_amount", "Label")));
    pipeline.Add(new CategoricalOneHotVectorizer("vendor_id",
                                        "rate_code",
                                        "payment_type"));
    pipeline.Add(new ColumnConcatenator("Features",
                                        "vendor_id",
                                        "rate_code",
                                        "passenger_count",
                                        "trip_distance",
                                        "payment_type"));
    pipeline.Add(new FastTreeRegressor());
    PredictionModel<TaxiTrip, TaxiTripFarePrediction> model = pipeline.Train<TaxiTrip, TaxiTripFarePrediction>();
    if (!Directory.Exists(ModelDirectory))
    {
        Directory.CreateDirectory(ModelDirectory);
    }
    await model.WriteAsync(ModelPath);
    return model;
}

评估验证模型

创建一个Evaluate方法,对训练后的模型进行验证评估。

public static void Evaluate(PredictionModel<TaxiTrip, TaxiTripFarePrediction> model)
{
    var testData = new TextLoader<TaxiTrip>(TestDataPath, useHeader: true, separator: ",");
    var evaluator = new RegressionEvaluator();
    RegressionMetrics metrics = evaluator.Evaluate(model, testData);
    // Rms should be around 2.795276
    Console.WriteLine("Rms=" + metrics.Rms);
    Console.WriteLine("RSquared = " + metrics.RSquared);
}

预测新数据

定义一个被用于预测的新数据,对于各个特征进行恰当地赋值。

static class TestTrips
{
    internal static readonly TaxiTrip Trip1 = new TaxiTrip
    {
        vendor_id = "VTS",
        rate_code = "1",
        passenger_count = 1,
        trip_distance = 10.33f,
        payment_type = "CSH",
        fare_amount = 0 // predict it. actual = 29.5
    };
}
  • 预测的方法很简单,prediction即预测的结果,从中打印出预测的费用和真实费用。

    var prediction = model.Predict(TestTrips.Trip1);
    
    Console.WriteLine("Predicted fare: {0}, actual fare: 29.5", prediction.fare_amount);

     

  • 运行结果

    640?wx_fmt=png

到此我们完成了所有的步骤,关于这些代码的详细说明,可以参看《Tutorial: Use ML.NET to Predict New York Taxi Fares (Regression)》,只是要注意该文中的部分代码有误,由于使用到了C# 7.1的语法特性,本文的代码是经过了修正的。完整的代码如下:

using System;
using Microsoft.ML.Models;
using Microsoft.ML.Runtime;
using Microsoft.ML.Runtime.Api;
using Microsoft.ML.Trainers;
using Microsoft.ML.Transforms;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using System.Threading.Tasks;
using System.IO;
namespace TaxiFarePrediction
{
    class Program
    {
        const string DataPath = @".\Data\taxi-fare-test.csv";
        const string TestDataPath = @".\Data\taxi-fare-train.csv";
        const string ModelPath = @".\Models\Model.zip";
        const string ModelDirectory = @".\Models";
        public class TaxiTrip
        {
            [Column(ordinal: "0")]
            public string vendor_id;
            [Column(ordinal: "1")]
            public string rate_code;
            [Column(ordinal: "2")]
            public float passenger_count;
            [Column(ordinal: "3")]
            public float trip_time_in_secs;
            [Column(ordinal: "4")]
            public float trip_distance;
            [Column(ordinal: "5")]
            public string payment_type;
            [Column(ordinal: "6")]
            public float fare_amount;
        }
        public class TaxiTripFarePrediction
        {
            [ColumnName("Score")]
            public float fare_amount;
        }
        static class TestTrips
        {
            internal static readonly TaxiTrip Trip1 = new TaxiTrip
            {
                vendor_id = "VTS",
                rate_code = "1",
                passenger_count = 1,
                trip_distance = 10.33f,
                payment_type = "CSH",
                fare_amount = 0 // predict it. actual = 29.5
            };
        }
        public static async Task<PredictionModel<TaxiTrip, TaxiTripFarePrediction>> Train()
        {
            var pipeline = new LearningPipeline();
            pipeline.Add(new TextLoader<TaxiTrip>(DataPath, useHeader: true, separator: ","));
            pipeline.Add(new ColumnCopier(("fare_amount", "Label")));
            pipeline.Add(new CategoricalOneHotVectorizer("vendor_id",
                                              "rate_code",
                                              "payment_type"));
            pipeline.Add(new ColumnConcatenator("Features",
                                                "vendor_id",
                                                "rate_code",
                                                "passenger_count",
                                                "trip_distance",
                                                "payment_type"));
            pipeline.Add(new FastTreeRegressor());
            PredictionModel<TaxiTrip, TaxiTripFarePrediction> model = pipeline.Train<TaxiTrip, TaxiTripFarePrediction>();
            if (!Directory.Exists(ModelDirectory))
            {
                Directory.CreateDirectory(ModelDirectory);
            }
            await model.WriteAsync(ModelPath);
            return model;
        }
        public static void Evaluate(PredictionModel<TaxiTrip, TaxiTripFarePrediction> model)
        {
            var testData = new TextLoader<TaxiTrip>(TestDataPath, useHeader: true, separator: ",");
            var evaluator = new RegressionEvaluator();
            RegressionMetrics metrics = evaluator.Evaluate(model, testData);
            // Rms should be around 2.795276
            Console.WriteLine("Rms=" + metrics.Rms);
            Console.WriteLine("RSquared = " + metrics.RSquared);
        }
        static async Task Main(string[] args)
        {
            PredictionModel<TaxiTrip, TaxiTripFarePrediction> model = await Train();
            Evaluate(model);
            var prediction = model.Predict(TestTrips.Trip1);
            Console.WriteLine("Predicted fare: {0}, actual fare: 29.5", prediction.fare_amount);
        }
    }
}

不知不觉我们的ML.NET之旅又向前进了一步,是不是对于使用.NET Core进行机器学习解决现实生活中的问题更有兴趣了?请保持关注吧。

原文出处


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消