大赛简介
为响应国家健康中国战略,推送健康医疗和大数据的融合发展的政策,由清华大学临床医学院和数据科学研究院,天津市武清区京津高村科技创新园,以及多家重点医院联合主办的首届中国心电智能大赛正式启动。自今日起至2019年3月31日24时,大赛开启全球招募,预计大赛总奖金将高达百万元!目前官方报名网站已上线,欢迎高校、医院、创业团队等有志于中国心电人工智能发展的人员踊跃参加。
首届中国心电智能大赛官方报名网站>>http://mdi.ids.tsinghua.edu.cn
数据介绍
下载完整的训练集和测试集,共1000例常规心电图,其中训练集中包含600例,测试集中共400例。该数据是从多个公开数据集中获取。参赛团队需要利用有正常/异常两类标签的训练集数据设计和实现算法,并在没有标签的测试集上做出预测。
该心电数据的采样率为500 Hz。为了方便参赛团队用不同编程语言都能读取数据,所有心电数据的存储格式为MAT格式。该文件中存储了12个导联的电压信号。训练数据对应的标签存储在txt文件中,其中0代表正常,1代表异常。
赛题分析
简单分析一下,初赛的数据集共有1000个样本,其中训练集中包含600例,测试集中共400例。其中训练集中包含600例是具有label的,可以用于我们训练模型;测试集中共400例没有标签,需要我们使用训练好的模型进行预测。
赛题就是一个二分类预测问题,解题思路应该包括以下内容:
数据读取与处理
网络模型搭建
模型的训练
模型应用与提交预测结果
实战应用
经过对赛题的分析,我们把任务分成四个小任务,首先第一步是:
1.数据读取与处理
该心电数据的采样率为500 Hz。为了方便参赛团队用不同编程语言都能读取数据,所有心电数据的存储格式为MAT格式。该文件中存储了12个导联的电压信号。训练数据对应的标签存储在txt文件中,其中0代表正常,1代表异常。
我们由上述描述可以得知,
我们的数据保存在MAT格式文件中(这决定了后面我们要如何读取数据)
采样率为500 Hz(这个信息并没有怎么用到,大家可以简单了解一下,就是1秒采集500个点,由后面我们得知每个数据都是5000个点,也就是10秒的心电图片)
12个导联的电压信号(这个是指采用12种导联方式,大家可以简单理解为用12个体温计量体温,从而得到更加准确的信息,下图为导联方式简单介绍,大家了解下即可。要注意的是,既然提供了12种导联,我们应该全部都用到,虽然我们仅使用一种导联方式也可以进行训练与预测,但是经验告诉我们,采取多个特征会取得更优效果)
数据处理函数定义:
import kerasfrom scipy.io import loadmatimport matplotlib.pyplot as pltimport globimport numpy as npimport pandas as pdimport mathimport osfrom keras.layers import *from keras.models import *from keras.objectives import *BASE_DIR = "preliminary/TRAIN/"#进行归一化def normalize(v): return (v - v.mean(axis=1).reshape((v.shape[0],1))) / (v.max(axis=1).reshape((v.shape[0],1)) + 2e-12)#loadmat打开文件def get_feature(wav_file,Lens = 12,BASE_DIR=BASE_DIR): mat = loadmat(BASE_DIR+wav_file) dat = mat["data"] feature = dat[0:12] return(normalize(feature).transpose())#把标签转成oneHot形式def convert2oneHot(index,Lens): hot = np.zeros((Lens,)) hot[index] = 1 return(hot)TXT_DIR = "preliminary/reference.txt"MANIFEST_DIR = "preliminary/reference.csv"
读取一条数据进行显示
if __name__ == "__main__": dat1 = get_feature("preliminary/TRAIN/TRAIN101.mat") print(dat1.shape) #one data shape is (12, 5000) plt.plot(dat1[:,0]) plt.show()
我们由上述信息可以看出每种导联都是由5000个点组成的列表,12种导联方式使每个样本都是12*5000的矩阵,类似于一张分辨率为12x5000的照片。
我们需要处理的就是把每个读取出来,归一化一下,送入网络进行训练可以了。
标签处理方式
def create_csv(TXT_DIR=TXT_DIR): lists = pd.read_csv(TXT_DIR,sep=r"\t",header=None) lists = lists.sample(frac=1) lists.to_csv(MANIFEST_DIR,index=None) print("Finish save csv")
我这里是采用从reference.txt读取,然后打乱保存到reference.csv中,注意一定要进行数据打乱操作,不然训练效果很差。因为原始数据前面便签全部是1,后面全部是0
数据迭代方式
Batch_size = 20def xs_gen(path=MANIFEST_DIR,batch_size = Batch_size,train=True): img_list = pd.read_csv(path) if train : img_list = np.array(img_list)[:500] print("Found %s train items."%len(img_list)) print("list 1 is",img_list[0]) steps = math.ceil(len(img_list) / batch_size) # 确定每轮有多少个batch else: img_list = np.array(img_list)[500:] print("Found %s test items."%len(img_list)) print("list 1 is",img_list[0]) steps = math.ceil(len(img_list) / batch_size) # 确定每轮有多少个batch while True: for i in range(steps): batch_list = img_list[i * batch_size : i * batch_size + batch_size] np.random.shuffle(batch_list) batch_x = np.array([get_feature(file) for file in batch_list[:,0]]) batch_y = np.array([convert2oneHot(label,2) for label in batch_list[:,1]]) yield batch_x, batch_y
数据读取的方式我采用的是生成器的方式,这样可以按batch读取,加快训练速度,大家也可以采用一下全部读取,看个人的习惯了。关于生成器,可以参看我的这个博文。
2.网络模型搭建
数据我们处理好了,后面就是模型的搭建了,我使用keras搭建的,操作简单便捷,tf,pytorch,sklearn大家可以按照自己喜好来。
网络模型可以选择CNN,RNN,Attention结构,或者多模型的融合,抛砖引玉,此Baseline采用的一维CNN方式,一维CNN学习地址
模型搭建
TIME_PERIODS = 5000num_sensors = 12def build_model(input_shape=(TIME_PERIODS,num_sensors),num_classes=2): model = Sequential() model.add(Conv1D(16, 16,strides=2, activation='relu',input_shape=input_shape)) model.add(Conv1D(16, 16,strides=2, activation='relu',padding="same")) model.add(MaxPooling1D(2)) model.add(Conv1D(64, 8,strides=2, activation='relu',padding="same")) model.add(Conv1D(64, 8,strides=2, activation='relu',padding="same")) model.add(MaxPooling1D(2)) model.add(Conv1D(128, 4,strides=2, activation='relu',padding="same")) model.add(Conv1D(128, 4,strides=2, activation='relu',padding="same")) model.add(MaxPooling1D(2)) model.add(Conv1D(256, 2,strides=1, activation='relu',padding="same")) model.add(Conv1D(256, 2,strides=1, activation='relu',padding="same")) model.add(MaxPooling1D(2)) model.add(GlobalAveragePooling1D()) model.add(Dropout(0.3)) model.add(Dense(num_classes, activation='softmax')) return(model)
用model.summary()输出的网络模型为
________________________________________________________________ Layer (type) Output Shape Param # ================================================================= reshape_1 (Reshape) (None, 5000, 12) 0 _________________________________________________________________ conv1d_1 (Conv1D) (None, 2493, 16) 3088 _________________________________________________________________ conv1d_2 (Conv1D) (None, 1247, 16) 4112 _________________________________________________________________ max_pooling1d_1 (MaxPooling1 (None, 623, 16) 0 _________________________________________________________________ conv1d_3 (Conv1D) (None, 312, 64) 8256 _________________________________________________________________ conv1d_4 (Conv1D) (None, 156, 64) 32832 _________________________________________________________________ max_pooling1d_2 (MaxPooling1 (None, 78, 64) 0 _________________________________________________________________ conv1d_5 (Conv1D) (None, 39, 128) 32896 _________________________________________________________________ conv1d_6 (Conv1D) (None, 20, 128) 65664 _________________________________________________________________ max_pooling1d_3 (MaxPooling1 (None, 10, 128) 0 _________________________________________________________________ conv1d_7 (Conv1D) (None, 10, 256) 65792 _________________________________________________________________ conv1d_8 (Conv1D) (None, 10, 256) 131328 _________________________________________________________________ max_pooling1d_4 (MaxPooling1 (None, 5, 256) 0 _________________________________________________________________ global_average_pooling1d_1 ( (None, 256) 0 _________________________________________________________________ dropout_1 (Dropout) (None, 256) 0 _________________________________________________________________ dense_1 (Dense) (None, 2) 514 ================================================================= Total params: 344,482 Trainable params: 344,482 Non-trainable params: 0 _________________________________________________________________
训练参数比较少,大家可以根据自己想法更改。
3.网络模型训练
模型训练
if __name__ == "__main__": """dat1 = get_feature("TRAIN101.mat") print("one data shape is",dat1.shape) #one data shape is (12, 5000) plt.plot(dat1[0]) plt.show()""" if (os.path.exists(MANIFEST_DIR)==False): create_csv() train_iter = xs_gen(train=True) test_iter = xs_gen(train=False) model = build_model() print(model.summary()) ckpt = keras.callbacks.ModelCheckpoint( filepath='best_model.{epoch:02d}-{val_acc:.2f}.h5', monitor='val_acc', save_best_only=True,verbose=1) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit_generator( generator=train_iter, steps_per_epoch=500//Batch_size, epochs=20, initial_epoch=0, validation_data = test_iter, nb_val_samples = 100//Batch_size, callbacks=[ckpt], )
训练过程输出(最优结果:loss: 0.0565 - acc: 0.9820 - val_loss: 0.8307 - val_acc: 0.8800)
Epoch 10/20 25/25 [==============================] - 1s 37ms/step - loss: 0.2329 - acc: 0.9040 - val_loss: 0.4041 - val_acc: 0.8700 Epoch 00010: val_acc improved from 0.85000 to 0.87000, saving model to best_model.10-0.87.h5 Epoch 11/20 25/25 [==============================] - 1s 38ms/step - loss: 0.1633 - acc: 0.9380 - val_loss: 0.5277 - val_acc: 0.8300 Epoch 00011: val_acc did not improve from 0.87000 Epoch 12/20 25/25 [==============================] - 1s 40ms/step - loss: 0.1394 - acc: 0.9500 - val_loss: 0.4916 - val_acc: 0.7400 Epoch 00012: val_acc did not improve from 0.87000 Epoch 13/20 25/25 [==============================] - 1s 38ms/step - loss: 0.1746 - acc: 0.9220 - val_loss: 0.5208 - val_acc: 0.8100 Epoch 00013: val_acc did not improve from 0.87000 Epoch 14/20 25/25 [==============================] - 1s 38ms/step - loss: 0.1009 - acc: 0.9720 - val_loss: 0.5513 - val_acc: 0.8000 Epoch 00014: val_acc did not improve from 0.87000 Epoch 15/20 25/25 [==============================] - 1s 38ms/step - loss: 0.0565 - acc: 0.9820 - val_loss: 0.8307 - val_acc: 0.8800 Epoch 00015: val_acc improved from 0.87000 to 0.88000, saving model to best_model.15-0.88.h5 Epoch 16/20 25/25 [==============================] - 1s 38ms/step - loss: 0.0261 - acc: 0.9920 - val_loss: 0.6443 - val_acc: 0.8400 Epoch 00016: val_acc did not improve from 0.88000 Epoch 17/20 25/25 [==============================] - 1s 38ms/step - loss: 0.0178 - acc: 0.9960 - val_loss: 0.7773 - val_acc: 0.8700 Epoch 00017: val_acc did not improve from 0.88000 Epoch 18/20 25/25 [==============================] - 1s 38ms/step - loss: 0.0082 - acc: 0.9980 - val_loss: 0.8875 - val_acc: 0.8600 Epoch 00018: val_acc did not improve from 0.88000 Epoch 19/20 25/25 [==============================] - 1s 37ms/step - loss: 0.0045 - acc: 1.0000 - val_loss: 1.0057 - val_acc: 0.8600 Epoch 00019: val_acc did not improve from 0.88000 Epoch 20/20 25/25 [==============================] - 1s 37ms/step - loss: 0.0012 - acc: 1.0000 - val_loss: 1.1088 - val_acc: 0.8600 Epoch 00020: val_acc did not improve from 0.88000
4.模型应用预测结果
预测数据
if __name__ == "__main__": """dat1 = get_feature("TRAIN101.mat") print("one data shape is",dat1.shape) #one data shape is (12, 5000) plt.plot(dat1[0]) plt.show()""" """if (os.path.exists(MANIFEST_DIR)==False): create_csv() train_iter = xs_gen(train=True) test_iter = xs_gen(train=False) model = build_model() print(model.summary()) ckpt = keras.callbacks.ModelCheckpoint( filepath='best_model.{epoch:02d}-{val_acc:.2f}.h5', monitor='val_acc', save_best_only=True,verbose=1) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit_generator( generator=train_iter, steps_per_epoch=500//Batch_size, epochs=20, initial_epoch=0, validation_data = test_iter, nb_val_samples = 100//Batch_size, callbacks=[ckpt], )""" PRE_DIR = "sample_codes/answers.txt" model = load_model("best_model.15-0.88.h5") pre_lists = pd.read_csv(PRE_DIR,sep=r" ",header=None) print(pre_lists.head()) pre_datas = np.array([get_feature(item,BASE_DIR="preliminary/TEST/") for item in pre_lists[0]]) pre_result = model.predict_classes(pre_datas)#0-1概率预测 print(pre_result.shape) pre_lists[1] = pre_result pre_lists.to_csv("sample_codes/answers1.txt",index=None,header=None) print("predict finish")
下面是前十条预测结果:
TEST394,0 TEST313,1 TEST484,0 TEST288,0 TEST261,1 TEST310,0 TEST286,1 TEST367,1 TEST149,1 TEST160,1
大家需要注意一下,我预测的方式和官方不同,需要大家自己根据赛题要求来进行预测提交。
展望
此Baseline采用最简单的一维卷积达到了88%测试准确率(可能会因为随机初始化值上下波动),大家也可以多尝试GRU,Attention,和Resnet等结果,测试准确率准确率会突破95+。
能力有限,写的不好的地方欢迎大家批评指正。
共同学习,写下你的评论
评论加载中...
作者其他优质文章