为了账号安全,请及时绑定邮箱和手机立即绑定

Go语言交叉编译工具gox

标签:
Go

基本介绍

交叉编译是为了在不同平台编译出其他平台的程序,比如在Linux编译出Windows程序,在Windows能编译出Linux程序,32位系统下编译出64位程序,今天介绍的gox就是其中一款交叉编译工具。

配置环境

首先配置好Go语言的环境变量,并在~/.bash_profile中设置,简单说明一下为什么要添加至该文件,首先以下代码在终端执行完成后只对当前会话有效,关闭终端变量就失效了,而.bash_profile文件在用户每次登录时都会执行一次,把环境变量设置到该文件中,每次登录都会初始化环境变量。当然,放在~/.bashrc中也是可以的,它不仅会在登录时执行,还会在每次打开终端时执行。

export GOPATH=${HOME}/go
export GOROOT=/usr/local/go
export GOBIN=${GOPATH}/bin
export PATH=${PATH}:${GOBIN}

GOROOT与GOPATH要根据自身情况设置,不要盲目跟从,设置完成后若要该文件立即生效,可以执行source命令。

source ~/.bash_profile

如果你的终端装了zsh,可能重新打开终端后依然会失效,那么可以在~/.zshrc文件的最后一行追加上source指令。

source ~/.bash_profile

gox的安装

在终端执行以下指令进行安装。

go get github.com/mitchellh/gox

安装结束后,执行gox -h,如果有展示帮助信息,代表安装成功。

➜  ~ gox -h
Usage: gox [options] [packages]

  Gox cross-compiles Go applications in parallel.

  If no specific operating systems or architectures are specified, Gox
  will build for all pairs supported by your version of Go.
  ......

gox的使用

按照惯例,我们先祭出hello,world的演示代码。

package main

import "fmt"

func main() {
	fmt.Print("hello,world")
}

此时进入项目中的工作目录($GOPATH/src/[你的项目名]),直接执行gox命令,会生成多达21个不同平台的可执行文件,横跨linux、windows、freebsd、darwin等系统。

➜  hello gox
Number of parallel builds: 3

-->     linux/amd64: hello
-->   openbsd/amd64: hello
-->      darwin/386: hello
-->    linux/mipsle: hello
-->     windows/386: hello
-->   windows/amd64: hello
-->    darwin/amd64: hello
-->       linux/386: hello
-->     linux/s390x: hello
-->      netbsd/386: hello
-->       linux/arm: hello
-->     freebsd/386: hello
-->    netbsd/amd64: hello
-->     freebsd/arm: hello
-->   freebsd/amd64: hello
-->     openbsd/386: hello
-->    linux/mips64: hello
-->      linux/mips: hello
-->  linux/mips64le: hello
-->      netbsd/arm: hello

但我并不想一次生成所有平台的程序,这时就需要gox的参数进行指定,如下所示,os参数指定要生成的系统名称,arch指定CPU的架构。

gox -os "windows" -arch amd64

其实它所支持的并不止21款,这些只是默认生成的,下面是gox对各种系统的定义,感兴趣的同学可以自行了解。

Platforms_1_0 = []Platform{
		{"darwin", "386", true},
		{"darwin", "amd64", true},
		{"linux", "386", true},
		{"linux", "amd64", true},
		{"linux", "arm", true},
		{"freebsd", "386", true},
		{"freebsd", "amd64", true},
		{"openbsd", "386", true},
		{"openbsd", "amd64", true},
		{"windows", "386", true},
		{"windows", "amd64", true},
	}

	Platforms_1_1 = append(Platforms_1_0, []Platform{
		{"freebsd", "arm", true},
		{"netbsd", "386", true},
		{"netbsd", "amd64", true},
		{"netbsd", "arm", true},
		{"plan9", "386", false},
	}...)

	Platforms_1_3 = append(Platforms_1_1, []Platform{
		{"dragonfly", "386", false},
		{"dragonfly", "amd64", false},
		{"nacl", "amd64", false},
		{"nacl", "amd64p32", false},
		{"nacl", "arm", false},
		{"solaris", "amd64", false},
	}...)

	Platforms_1_4 = append(Platforms_1_3, []Platform{
		{"android", "arm", false},
		{"plan9", "amd64", false},
	}...)

	Platforms_1_5 = append(Platforms_1_4, []Platform{
		{"darwin", "arm", false},
		{"darwin", "arm64", false},
		{"linux", "arm64", false},
		{"linux", "ppc64", false},
		{"linux", "ppc64le", false},
	}...)

	Platforms_1_6 = append(Platforms_1_5, []Platform{
		{"android", "386", false},
		{"linux", "mips64", false},
		{"linux", "mips64le", false},
	}...)

	Platforms_1_7 = append(Platforms_1_5, []Platform{
		// While not fully supported s390x is generally useful
		{"linux", "s390x", true},
		{"plan9", "arm", false},
		// Add the 1.6 Platforms, but reflect full support for mips64 and mips64le
		{"android", "386", false},
		{"linux", "mips64", true},
		{"linux", "mips64le", true},
	}...)

	Platforms_1_8 = append(Platforms_1_7, []Platform{
		{"linux", "mips", true},
		{"linux", "mipsle", true},
	}...)

除了刚才的命令外还有另一种生成方式,用斜杠的方式将系统与架构合并批量生成。

gox -osarch "windows/amd64 linux/amd64"

赶紧把你生成的程序发给小伙伴执行试试吧,以上就是本文全部内容,感谢阅读。

点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
全栈工程师
手记
粉丝
94
获赞与收藏
383

关注作者,订阅最新文章

阅读免费教程

  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消