为了账号安全,请及时绑定邮箱和手机立即绑定

程序猿修仙之路--算法之希尔排序

标签:
Go C#
o_%e6%b1%9f%e6%b9%96.jpg

自冯诺依曼开启大计算机时代以来,经过近一个世纪的蓬勃发展,已然成为一个人才众多的群体:IT江湖
依附市场规律,江湖上悄然兴起数十宗门,其中以AI,大数据近期最为热门。
每个宗门人才济济,抢夺人才大战早已在阿里,腾讯,百度等数百个国度白热化。
IT江湖人士凭借JAVA,Python等武器,在精通各路内功心法的基础上在各个国度扬名立万,修仙成佛者众多,为后人树下追宠之榜样。

内功心法众多,其中以算法最为精妙,是修仙德道必经之路


虽然江湖上算法内功繁多,但是好的算法小编认为必须符合以下几个条件,方能真正提高习练者实力。

  • 时间复杂度(运行时间)

在算法时间复杂度维度,我们主要对比较和交换的次数做对比,其他不交换元素的算法,主要会以访问数组的次数的维度做对比。

其实有很多修炼者对于算法的时间复杂度有点模糊,分不清什么所谓的 O(n),O(nlogn),O(logn)…等,也许下图对一些人有一些更直观的认识。

image

  • 空间复杂度(额外的内存使用)

排序算法的额外内存开销和运行时间同等重要。 就算一个算法时间复杂度比较优秀,空间复杂度非常差,使用的额外内存非常大,菜菜认为它也算不上一个优秀的算法。

  • 结果的正确性

这个指标是菜菜自己加上的,我始终认为一个优秀的算法最终得到的结果必须是正确的。就算一个算法拥有非常优秀的时间和空间复杂度,但是结果不正确,导致修炼者经脉逆转,走火入魔,又有什么意义呢?

原理

在上一篇我们修炼了插入排序,希尔排序(又名Shell’s Sort)本质上属于插入排序,是插入排序的一种更高效升级版本,也称为缩小增量排序。同时希尔排序在时间复杂度上也是突破O(n²)的第一批算法之一。你说厉不厉害?~~

基本思想

通过直接插入排序的修炼,我们知道直接插入排序是一种性能比较低的初级算法,对修炼者提升不是不大, 但是有一点优势那就是对于小型数组或者部分有序的数组非常高效,希尔排序就是基于这一点优势对直接插入排序进行了改良。换句话说直接插入排序低效的原因在于无序,无序的程度越高越低效。例如:最小的元素初始位置在数组的另一端,此元素要想到达正确位置,是需要一个一个位置前移,最终需要N-1次移动。如何改变这种状态正是希尔排序的突破口。
希尔排序的思想是把数组下标按照一定的增量h分组,然后对每组进行直接插入排序。在进行排序时,如果h很大,我们就能将元素移动到很远的地方,为实现更小的h有序创造方便。然后增量h逐渐减小(每个分组的元素量增多),直到h为1整个数组划分为一组,排序结束。

也许一张更直观的图比上千句话效果都好

image

复杂度

  • 时间复杂度

最坏时间复杂度依然为O(n²),一些经过优化的增量序列如Hibbard经过复杂证明可使得最坏时间复杂度为O(n^3/2),最好情况下为O(n)属于线性复杂度。

  • 空间复杂度

优于希尔排序本质上属于插入排序升级版,所以空间上和直接插入排序一致为O(1),在常数级别。

性能和特点

  • 希尔排序之所以高效是因为它权衡了子数组的规模和有序性。排序之初各个子数组都很短,这种情况很适合插入排序。
  • 对于增量h的选择对希尔排序非常重要,直接影响其性能。其实除了h的选择之外,h之间的数学性质也影响希尔排序的性能,比如它们的公因子等。很多论文研究了各种不同的递增序列,但都无法证明某个序列是最好的。对于某些基础递增的序列其实在性能上和某些复杂的序列接近,所以很多情况下我们没有必要花大力气在复杂序列上的研究上。
适用场景

与插入排序不同,希尔排序可以适用于大型数组,它对任意排序的数组表现良好,虽然不是最好。实验证明,希尔排序比我们上两章学习的选择排序和插入排序要快的多,并且数组越大,优势越大。
目前最重要的结论是:希尔排序的运行时间达不到平方级别。
对于中等大小的数组希尔排序的时间是在可接受范围之内的,因为它的代码量很小,而且需要的额外空间很小,几乎可以忽略。对于其他更高效的其他算法,可能比希尔排序更高效,但是代码也更复杂,性能上比希尔排序也高不了几倍,所以在很多情况下希尔排序成为首选的算法。

其他

直接插入排序是稳定的,希尔排序呢?

由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以希尔排序排序是不稳定的。

试炼一发吧

c# 武器版
        static void Main(string[] args)
        {
            List<int> data = new List<int>() ;
            for (int i = 0; i < 11; i++)
            {
                
                data.Add(new Random(Guid.NewGuid().GetHashCode()).Next(1, 100));
            }
            //打印原始数组值
            Console.WriteLine($"原始数据: {string.Join(",", data)}");
            int n = data.Count;
            int h = 1;
            //计算初始化增量,网络提供,据说比较好的递增因子
            while (h < n / 3)
            {
                h = 3 * h + 1;
            }
            Console.WriteLine($"初始化增量:{h}");
            while (h >= 1)
            {
                for (int i = h; i < n; i++)
                {
                    for (int j = i; j >=h&&data[j]<data[j-h]; j-=h)
                    {
                        //异或法 交换两个变量,不用临时变量
                        data[j] = data[j] ^ data[j - 1];
                        data[j - 1] = data[j] ^ data[j - 1];
                        data[j] = data[j] ^ data[j - 1];
                    }
                }
                h = h / 3;
            }


            //打印排序后的数组
            Console.WriteLine($"排序数据: {string.Join(",", data)}");
            Console.Read();
        }

运行结果:

原始数据: 47,50,32,42,44,79,10,16,51,74,52

初始化增量:4

排序数据: 10,16,32,42,44,47,50,51,52,74,79

Golang 武器版
package main

import (
	"fmt"
	"math/rand"
)

func main() {
	var data []int
	for i := 0; i < 11; i++ {
		data = append(data, rand.Intn(100))
	}
	fmt.Println(data)
	var n = len(data)
	var h = 1
	for h < n/3 {
		h = 3*h + 1
	}
	fmt.Println(h)
	for h >= 1 {
		for i := h; i < n; i++ {
			for j := i; j >= h && data[j] < data[j-h]; j -= h {
				data[j], data[j-h] = data[j-h], data[j]
			}
		}
		h = h / 3
	}
	fmt.Println(data)
}

运行结果:

[81 87 47 59 81 18 25 40 56 0 94]

4

[0 18 25 40 47 56 59 81 81 87 94]


添加关注,查看更精美版本,收获更多精彩

image

点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消