为了账号安全,请及时绑定邮箱和手机立即绑定

深度优先搜索

标签:
算法

深度优先搜索(DFS:Depth-First Search)是一种图搜索策略,其将搜索限制到 2 种操作:

  • (a) 访问图中的一个节点;

  • (b) 访问该节点的子节点;

在深度优先搜索中,对于最新发现的顶点,如果它还有以此为起点而未探测到的边,就沿此边继续探测下去。当顶点 v 的所有边都已被探寻过后,搜索将回溯到发现顶点 v 有起始点的那些边。这一过程一直进行到已发现从源顶点可达的所有顶点为止。实际上深度优先搜索最初的探究也是为了解决迷宫问题。

https://img1.sycdn.imooc.com//5aec088e0001f6a004000251.jpg

对图的深度优先搜索与对树(Tree)的深度优先遍历(Depth First Traversal)是类似的,区别在于图中可能存在环,所以可能会遍历到已经遍历的节点。

例如,下面的图中,从顶点 2 开始遍历,当遍历到顶点 0 时,子顶点为 1 和 2,而顶点 2 已经遍历过,如果不做标记,遍历过程将陷入死循环。所以,在 DFS 的算法实现中需要对顶点是否访问过做标记。

https://img1.sycdn.imooc.com//5aec089a000142f905070188.jpg

上图的 DFS 遍历结果为 2, 0, 1, 3。

DFS 算法可以通过不同方式来实现:

  • 递归方式

  • 非递归方式:使用栈(Stack)数据结构来存储遍历图中节点的中间状态;

DFS 算法的递归方式伪码如下:


1 procedure DFS(G,v):
2     label v as discovered
3     for all edges from v to w in G.adjacentEdges(v) do
4         if vertex w is not labeled as discovered then
5             recursively call DFS(G,w)


DFS 算法的非递归方式伪码如下:


1 procedure DFS-iterative(G,v):
2     let S be a stack
3     S.push(v)
4     while S is not empty
5           v ← S.pop() 
6           if v is not labeled as discovered:
7               label v as discovered
8               for all edges from v to w in G.adjacentEdges(v) do
9                   S.push(w)

深度优先搜索(DFS)的时间复杂度为 O(V+E),V 即 Vertex 顶点数量,E 即 Edge 边数量。

DFS 算法实现代码如下:


  1 using System;
  2 using System.Linq;
  3 using System.Collections.Generic;
  4 
  5 namespace GraphAlgorithmTesting
  6 {
  7   class Program
  8   {
  9     static void Main(string[] args)
 10     {
 11       Graph g = new Graph(4);
 12       g.AddEdge(0, 1);
 13       g.AddEdge(0, 2);
 14       g.AddEdge(1, 2);
 15       g.AddEdge(2, 0);
 16       g.AddEdge(2, 3);
 17       g.AddEdge(3, 3);
 18 
 19       foreach (var vertex in g.DFS(2))
 20       {
 21         Console.WriteLine(vertex);
 22       }
 23       foreach (var vertex in g.RecursiveDFS(2))
 24       {
 25         Console.WriteLine(vertex);
 26       }
 27 
 28       Console.ReadKey();
 29     }
 30 
 31     class Edge
 32     {
 33       public Edge(int begin, int end)
 34       {
 35         this.Begin = begin;
 36         this.End = end;
 37       }
 38 
 39       public int Begin { get; private set; }
 40       public int End { get; private set; }
 41     }
 42 
 43     class Graph
 44     {
 45       private Dictionary<int, List<Edge>> _adjacentEdges
 46         = new Dictionary<int, List<Edge>>();
 47 
 48       public Graph(int vertexCount)
 49       {
 50         this.VertexCount = vertexCount;
 51       }
 52 
 53       public int VertexCount { get; private set; }
 54 
 55       public void AddEdge(int begin, int end)
 56       {
 57         if (!_adjacentEdges.ContainsKey(begin))
 58         {
 59           var edges = new List<Edge>();
 60           _adjacentEdges.Add(begin, edges);
 61         }
 62 
 63         _adjacentEdges[begin].Add(new Edge(begin, end));
 64       }
 65 
 66       public List<int> DFS(int start)
 67       {
 68         List<int> traversal = new List<int>();
 69         int current = start;
 70 
 71         // mark all the vertices as not visited
 72         bool[] visited = new bool[VertexCount];
 73         for (int i = 0; i < VertexCount; i++)
 74         {
 75           visited[i] = false;
 76         }
 77 
 78         // create a stack for DFS
 79         Stack<int> stack = new Stack<int>();
 80 
 81         // mark the current node as visited and push it
 82         visited[current] = true;
 83         stack.Push(current);
 84 
 85         while (stack.Count > 0)
 86         {
 87           current = stack.Pop();
 88 
 89           // if this is what we are looking for
 90           traversal.Add(current);
 91 
 92           // get all child vertices of the popped vertex,
 93           // if a child has not been visited, 
 94           // then mark it visited and push it
 95           if (_adjacentEdges.ContainsKey(current))
 96           {
 97             foreach (var edge in _adjacentEdges[current].OrderByDescending(e => e.End))
 98             {
 99               if (!visited[edge.End])
100               {
101                 visited[edge.End] = true;
102                 stack.Push(edge.End);
103               }
104             }
105           }
106         }
107 
108         return traversal;
109       }
110 
111       public List<int> RecursiveDFS(int start)
112       {
113         List<int> traversal = new List<int>();
114         int current = start;
115 
116         // mark all the vertices as not visited
117         bool[] visited = new bool[VertexCount];
118         for (int i = 0; i < VertexCount; i++)
119         {
120           visited[i] = false;
121         }
122 
123         // traversal
124         RecursiveDFSTraversal(current, visited, traversal);
125 
126         return traversal;
127       }
128 
129       private void RecursiveDFSTraversal(int current, bool[] visited, List<int> traversal)
130       {
131         visited[current] = true;
132         traversal.Add(current);
133 
134         if (_adjacentEdges.ContainsKey(current))
135         {
136           foreach (var edge in _adjacentEdges[current].OrderBy(e => e.End))
137           {
138             if (!visited[edge.End])
139             {
140               RecursiveDFSTraversal(edge.End, visited, traversal);
141             }
142           }
143         }
144       }
145     }
146   }
147 }

参考资料

  • 广度优先搜索

  • 深度优先搜索

  • Breadth First Traversal for a Graph

  • Depth First Traversal for a Graph

  • 深度优先搜索 广度优先搜索类训练题

  • Introduction to Algorithms 6.006 - Lecture 13

  • 深度优先搜索 DFS

  • 算法与数据结构


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消