为了账号安全,请及时绑定邮箱和手机立即绑定

Python学习案例之人脸检测识别

标签:
Python

前言

随着科技的发展,人脸识别技术在许多领域得到的非常广泛的应用,手机支付、银行身份验证、手机人脸解锁等等。

识别

废话少说,这里我们使用 opencv 中自带了 haar人脸特征分类器,利用训练好的 haar 特征的 xml 文件,在图片上检测出人脸的坐标,利用这个坐标,我们可以将人脸区域剪切保存,也可以在原图上将人脸框出。

代码实现:

# -*-coding:utf8-*-#import osimport cv2from PIL import Image, ImageDrawfrom datetime import datetime"""
分类器 https://github.com/opencv/opencv/tree/master/data/haarcascades
安装模块:pip install Pillow   pip install opencv-python
博客:https://blog.52itstyle.vip/archives/3771/
"""def detectFaces(image_name):
    img = cv2.imread(image_name)
    face_cascade = cv2.CascadeClassifier(os.getcwd()+"\\haarcascade\\haarcascade_frontalface_alt.xml")    if img.ndim == 3:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)    else:
        gray = img  # if语句:如果img维度为3,说明不是灰度图,先转化为灰度图gray,如果不为3,也就是2,原图就是灰度图

    faces = face_cascade.detectMultiScale(gray, 1.2, 5)  # 1.3和5是特征的最小、最大检测窗口,它改变检测结果也会改变
    result = []    for (x, y, width, height) in faces:
        result.append((x, y, x + width, y + height))    return result# 保存人脸图def saveFaces(image_name):
    faces = detectFaces(image_name)    if faces:        # 将人脸保存在save_dir目录下。
        # Image模块:Image.open获取图像句柄,crop剪切图像(剪切的区域就是detectFaces返回的坐标),save保存。
        save_dir = image_name.split('.')[0] + "_faces"
        os.mkdir(save_dir)
        count = 0
        for (x1, y1, x2, y2) in faces:
            file_name = os.path.join(save_dir, str(count) + ".jpg")
            Image.open(image_name).crop((x1, y1, x2, y2)).save(file_name)
            count += 1if __name__ == '__main__':
    time1 = datetime.now()
    result = detectFaces(os.getcwd()+"\\images\\gaoyuanyuan.jpg")
    time2 = datetime.now()
    print("耗时:" + str(time2 - time1))    if len(result) > 0:
        print("有人存在!!---》人数为:" + str(len(result)))    else:
        print('视频图像中无人!!')

    drawFaces(os.getcwd()+"\\images\\", "hanxue.jpg")
    saveFaces(os.getcwd()+"\\images\\gaoyuanyuan.jpg")

识别效果图:

5c7a9cb80001ba3519201200.jpg

多人识别效果:

5c7a9cb90001370906340407.jpg

经过测试,最终选用了 haarcascade_frontalface_alt.xml 做人脸识别,识别率最高。

人脸检测分类器对比:

级联分类器的类型XML文件名
人脸检测器(默认)haarcascade_frontalface_default.xml
人脸检测器(快速的Haar)haarcascade_frontalface_alt2.xml
人脸检测器(Tree)haarcascade_frontalface_alt_tree.xml
人脸检测器(Haar_1)haarcascade_frontalface_alt.xml

小结

开源的人脸检测分类器对于标准的人脸识别足够了,要想精确识别比如,侧脸、模糊、光照、遮挡的人脸,只能通过深度机器学习进一步优化识别精度和速度。

源码

https://gitee.com/52itstyle/Python/tree/master/Day09

5c7a9cb90001f8be06200044.jpg

作者:        小柒

出处:        https://blog.52itstyle.vip

 

 

本文版权归作者所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出


点击查看更多内容
1人点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消