[inside hotspot] 汇编模板解释器(Template Interpreter)和字节码执行
1.模板解释器
hotspot解释器模块(hotspot\src\share\vm\interpreter
)有两个实现:基于C++的解释器和基于汇编的模板解释器。hotspot默认使用比较快的模板解释器。
其中
C++解释器 =
bytecodeInterpreter*
+cppInterpreter*
模板解释器 =
templateTable*
+templateInterpreter*
它们前者负责字节码的解释,后者负责解释器的运行时,共同完成解释功能。这里我们只关注模板解释器。
模板解释器又分为三个组成部分:
templateInterpreterGenerator
解释器生成器templateTable
字节码实现templateInterpreter
解释器
可能看起来很奇怪,为什么有一个解释器生成器和字节码实现。进入解释器实现:
class TemplateInterpreter: public AbstractInterpreter { friend class VMStructs; friend class InterpreterMacroAssembler; friend class TemplateInterpreterGenerator; friend class TemplateTable; friend class CodeCacheExtensions; // friend class Interpreter; public: enum MoreConstants { number_of_return_entries = number_of_states, // number of return entry points number_of_deopt_entries = number_of_states, // number of deoptimization entry points number_of_return_addrs = number_of_states // number of return addresses }; protected: static address _throw_ArrayIndexOutOfBoundsException_entry; static address _throw_ArrayStoreException_entry; static address _throw_ArithmeticException_entry; static address _throw_ClassCastException_entry; static address _throw_NullPointerException_entry; static address _throw_exception_entry; static address _throw_StackOverflowError_entry; static address _remove_activation_entry; // continuation address if an exception is not handled by current frame#ifdef HOTSWAP static address _remove_activation_preserving_args_entry; // continuation address when current frame is being popped#endif // HOTSWAP#ifndef PRODUCT static EntryPoint _trace_code;#endif // !PRODUCT static EntryPoint _return_entry[number_of_return_entries]; // entry points to return to from a call static EntryPoint _earlyret_entry; // entry point to return early from a call static EntryPoint _deopt_entry[number_of_deopt_entries]; // entry points to return to from a deoptimization static EntryPoint _continuation_entry; static EntryPoint _safept_entry; static address _invoke_return_entry[number_of_return_addrs]; // for invokestatic, invokespecial, invokevirtual return entries static address _invokeinterface_return_entry[number_of_return_addrs]; // for invokeinterface return entries static address _invokedynamic_return_entry[number_of_return_addrs]; // for invokedynamic return entries static DispatchTable _active_table; // the active dispatch table (used by the interpreter for dispatch) static DispatchTable _normal_table; // the normal dispatch table (used to set the active table in normal mode) static DispatchTable _safept_table; // the safepoint dispatch table (used to set the active table for safepoints) static address _wentry_point[DispatchTable::length]; // wide instructions only (vtos tosca always) public: ... static int InterpreterCodeSize; };
里面很多address
变量,EntryPoint
是一个address数组,DispatchTable
也是。
模板解释器就是由一系列例程(routine)组成的,即address
变量,它们每个都表示一个例程的入口地址,比如异常处理例程,invoke指令例程,用于gc的safepoint例程...
举个形象的例子,我们都知道字节码文件长这样:
public void f(); 0: aload_0 1: invokespecial #5 // Method A.f:()V 4: getstatic #2 // Field java/lang/System.out:Ljava/io/PrintStream; 7: ldc #6 // String ff 9: invokevirtual #4 // Method java/io/PrintStream.println:(Ljava/lang/String;)V 12: return
如果要让我们写解释器,可能基本上就是一个循环里面switch,根据不同opcode派发到不同例程,例程的代码都是一样的模板代码,对aload_0的处理永远是取局部变量槽0的数据放到栈顶,那么完全可以在switch派发字节码前准备好这些模板代码,templateInterpreterGenerator
就是做的这件事,它的generate_all()
函数初始化了所有的例程:
void TemplateInterpreterGenerator::generate_all() { // 设置slow_signature_handler例程 { CodeletMark cm(_masm, "slow signature handler"); AbstractInterpreter::_slow_signature_handler = generate_slow_signature_handler(); } // 设置error_exit例程 { CodeletMark cm(_masm, "error exits"); _unimplemented_bytecode = generate_error_exit("unimplemented bytecode"); _illegal_bytecode_sequence = generate_error_exit("illegal bytecode sequence - method not verified"); } ...... }
另外,既然已经涉及到机器码了,单独的templateInterpreterGenerator
显然是不能完成这件事的,它还需要配合hotspot\src\cpu\x86\vm\templateInterpreterGenerator_x86.cpp
&&hotspot\src\cpu\x86\vm\templateInterpreterGenerator_x86_64.cpp
一起做事(我的机器是x86+windows)。
使用-XX:+UnlockDiagnosticVMOptions -XX:+PrintInterpreter -XX:+LogCompilation -XX:LogFile=file.log
保存结果到文件,可以查看生成的这些例程。
随便举个例子,模板解释器特殊处理java.lang.Math里的很多数学函数,使用它们不需要建立通常意义的java栈帧,且使用sse指令可以得到极大的性能提升:
// hotspot\src\cpu\x86\vm\templateInterpreterGenerator_x86_64.cppaddress TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { // rbx,: Method* // rcx: scratrch // r13: sender sp if (!InlineIntrinsics) return NULL; // Generate a vanilla entry address entry_point = __ pc(); if (kind == Interpreter::java_lang_math_fmaD) { if (!UseFMA) { return NULL; // Generate a vanilla entry } __ movdbl(xmm0, Address(rsp, wordSize)); __ movdbl(xmm1, Address(rsp, 3 * wordSize)); __ movdbl(xmm2, Address(rsp, 5 * wordSize)); __ fmad(xmm0, xmm1, xmm2, xmm0); } else if (kind == Interpreter::java_lang_math_fmaF) { if (!UseFMA) { return NULL; // Generate a vanilla entry } __ movflt(xmm0, Address(rsp, wordSize)); __ movflt(xmm1, Address(rsp, 2 * wordSize)); __ movflt(xmm2, Address(rsp, 3 * wordSize)); __ fmaf(xmm0, xmm1, xmm2, xmm0); } else if (kind == Interpreter::java_lang_math_sqrt) { __ sqrtsd(xmm0, Address(rsp, wordSize)); } else if (kind == Interpreter::java_lang_math_exp) { __ movdbl(xmm0, Address(rsp, wordSize)); if (StubRoutines::dexp() != NULL) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dexp()))); } else { __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dexp)); } } else if (kind == Interpreter::java_lang_math_log) { __ movdbl(xmm0, Address(rsp, wordSize)); if (StubRoutines::dlog() != NULL) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dlog()))); } else { __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dlog)); } } else if (kind == Interpreter::java_lang_math_log10) { __ movdbl(xmm0, Address(rsp, wordSize)); if (StubRoutines::dlog10() != NULL) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dlog10()))); } else { __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10)); } } else if (kind == Interpreter::java_lang_math_sin) { __ movdbl(xmm0, Address(rsp, wordSize)); if (StubRoutines::dsin() != NULL) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dsin()))); } else { __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dsin)); } } else if (kind == Interpreter::java_lang_math_cos) { __ movdbl(xmm0, Address(rsp, wordSize)); if (StubRoutines::dcos() != NULL) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dcos()))); } else { __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dcos)); } } else if (kind == Interpreter::java_lang_math_pow) { __ movdbl(xmm1, Address(rsp, wordSize)); __ movdbl(xmm0, Address(rsp, 3 * wordSize)); if (StubRoutines::dpow() != NULL) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dpow()))); } else { __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dpow)); } } else if (kind == Interpreter::java_lang_math_tan) { __ movdbl(xmm0, Address(rsp, wordSize)); if (StubRoutines::dtan() != NULL) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dtan()))); } else { __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dtan)); } } else { __ fld_d(Address(rsp, wordSize)); switch (kind) { case Interpreter::java_lang_math_abs: __ fabs(); break; default: ShouldNotReachHere(); } __ subptr(rsp, 2*wordSize); // Round to 64bit precision __ fstp_d(Address(rsp, 0)); __ movdbl(xmm0, Address(rsp, 0)); __ addptr(rsp, 2*wordSize); } __ pop(rax); __ mov(rsp, r13); __ jmp(rax); return entry_point; }
我们关注java.lang.math.Pow()
方法,加上-XX:+PrintInterpreter
查看生成的例程:
else if (kind == Interpreter::java_lang_math_pow) { __ movdbl(xmm1, Address(rsp, wordSize)); __ movdbl(xmm0, Address(rsp, 3 * wordSize)); if (StubRoutines::dpow() != NULL) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::dpow()))); } else { __ call_VM_leaf0(CAST_FROM_FN_PTR(address, SharedRuntime::dpow)); } }
---------------------------------------------------------------------- method entry point (kind = java_lang_math_pow) [0x000001bcb62feaa0, 0x000001bcb62feac0] 32 bytes 0x000001bcb62feaa0: vmovsd 0x8(%rsp),%xmm1 0x000001bcb62feaa6: vmovsd 0x18(%rsp),%xmm0 0x000001bcb62feaac: callq 0x000001bcb62f19d0 0x000001bcb62feab1: pop %rax 0x000001bcb62feab2: mov %r13,%rsp 0x000001bcb62feab5: jmpq *%rax 0x000001bcb62feab7: nop 0x000001bcb62feab8: add %al,(%rax) 0x000001bcb62feaba: add %al,(%rax) 0x000001bcb62feabc: add %al,(%rax) 0x000001bcb62feabe: add %al,(%rax)
callq
会调用hotspot\src\cpu\x86\vm\stubGenerator_x86_64.cpp
的address generate_libmPow()
,感兴趣的可以去看一下,这里就不展开了。
2.字节码的解释执行
现在我们知道了模板解释器其实是由一堆例程构成的,但是,字节码的例程的呢?看看上面TemplateInterpreter
的类定义,有个static DispatchTable _active_table;
,它就是我们要找的东西了。具体来说templateInterpreterGenerator
会调用TemplateInterpreterGenerator::set_entry_points()
为每个字节码设置例程,该例程通过templateTable::template_for()
获得。同样,这些代码需要关心cpu架构,所以自己每个字节码的例程也是由hotspot\src\cpu\x86\vm\templateTable_x86.cpp
+templateTable
共同完成的。
字节码太多了,这里也随便举个例子,考虑istore,它负责将栈顶数据出栈并存放到当前方法的局部变量表,实现如下:
void TemplateTable::istore() { transition(itos, vtos); locals_index(rbx); __ movl(iaddress(rbx), rax); }
合情合理的实现
等等,当使用-XX:+PrintInterpreter
查看istore的合情合理的例程时却得到了一大堆汇编:
---------------------------------------------------------------------- istore 54 istore [0x00000192d1972ba0, 0x00000192d1972c00] 96 bytes 0x00000192d1972ba0: mov (%rsp),%eax 0x00000192d1972ba3: add $0x8,%rsp 0x00000192d1972ba7: movzbl 0x1(%r13),%ebx 0x00000192d1972bac: neg %rbx 0x00000192d1972baf: mov %eax,(%r14,%rbx,8) 0x00000192d1972bb3: movzbl 0x2(%r13),%ebx 0x00000192d1972bb8: add $0x2,%r13 0x00000192d1972bbc: movabs $0x7fffd56e0fa0,%r10 0x00000192d1972bc6: jmpq *(%r10,%rbx,8) 0x00000192d1972bca: mov (%rsp),%eax 0x00000192d1972bcd: add $0x8,%rsp 0x00000192d1972bd1: movzwl 0x2(%r13),%ebx 0x00000192d1972bd6: bswap %ebx 0x00000192d1972bd8: shr $0x10,%ebx 0x00000192d1972bdb: neg %rbx 0x00000192d1972bde: mov %eax,(%r14,%rbx,8) 0x00000192d1972be2: movzbl 0x4(%r13),%ebx 0x00000192d1972be7: add $0x4,%r13 0x00000192d1972beb: movabs $0x7fffd56e0fa0,%r10 0x00000192d1972bf5: jmpq *(%r10,%rbx,8) 0x00000192d1972bf9: nopl 0x0(%rax)
虽然勉强能看出mov %eax,(%r14,%rbx,8)
对应__ movl(iaddress(n), rax);
,但是多出来的代码怎么回事。
要回答这个问题,需要点其他知识。
之前提到
templateInterpreterGenerator
会调用TemplateInterpreterGenerator::set_entry_points()
为每个字节码设置例程
可以从set_entry_points
出发看看它为istore做了什么特殊的事情:
... // 指令是否存在 if (Bytecodes::is_defined(code)) { Template* t = TemplateTable::template_for(code); assert(t->is_valid(), "just checking"); set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep); } // 指令是否可以扩宽,即wide if (Bytecodes::wide_is_defined(code)) { Template* t = TemplateTable::template_for_wide(code); assert(t->is_valid(), "just checking"); set_wide_entry_point(t, wep); } ... }
中间有一句话:
Template* t = TemplateTable::template_for(code);
从模板表中的查找Bytecodes::Code
常量得到的是一个Template
,Template
描述了一个指定的字节码对应的代码的一些属性
// A Template describes the properties of a code template for a given bytecode
// and provides a generator to generate the code template.
// hotspot\src\share\vm\utilities\globalDefinitions.hpp// TosState用来描述一个字节码或者方法执行前后的状态。enum TosState { // describes the tos cache contents btos = 0, // byte, bool tos cached ztos = 1, // byte, bool tos cached ctos = 2, // char tos cached stos = 3, // short tos cached itos = 4, // int tos cached ltos = 5, // long tos cached ftos = 6, // float tos cached dtos = 7, // double tos cached atos = 8, // object cached vtos = 9, // tos not cached number_of_states, ilgl // illegal state: should not occur};
// hotspot\src\share\vm\interpreter\templateTable.hppclass Template VALUE_OBJ_CLASS_SPEC { private: enum Flags { uses_bcp_bit, // 是否需要字节码指针(bcp)? does_dispatch_bit, // 是否需要dispatch? calls_vm_bit, // 是否调用了虚拟机方法? wide_bit // 能否扩宽,即加wide }; typedef void (*generator)(int arg); // 字节码代码生成器,其实是一个函数指针 int _flags; // 就是描述的flag TosState _tos_in; // 执行字节码前的栈顶缓存状态 TosState _tos_out; // 执行字节码的栈顶缓存状态 generator _gen; // 字节码代码生成器 int _arg; // 字节码代码生成器参数
然后找到istore对应的模板定义:
//hotspot\src\share\vm\interpreter\templateTable.cppvoid TemplateTable::initialize() { ... // interpr. templates // Java spec bytecodes ubcp|disp|clvm|iswd in out generator argument def(Bytecodes::_istore , ubcp|____|clvm|____, itos, vtos, istore , _ ); def(Bytecodes::_lstore , ubcp|____|____|____, ltos, vtos, lstore , _ ); def(Bytecodes::_fstore , ubcp|____|____|____, ftos, vtos, fstore , _ ); def(Bytecodes::_dstore , ubcp|____|____|____, dtos, vtos, dstore , _ ); def(Bytecodes::_astore , ubcp|____|clvm|____, vtos, vtos, astore , _ ); ... // wide Java spec bytecodes def(Bytecodes::_istore , ubcp|____|____|iswd, vtos, vtos, wide_istore , _ ); def(Bytecodes::_lstore , ubcp|____|____|iswd, vtos, vtos, wide_lstore , _ ); def(Bytecodes::_fstore , ubcp|____|____|iswd, vtos, vtos, wide_fstore , _ ); def(Bytecodes::_dstore , ubcp|____|____|iswd, vtos, vtos, wide_dstore , _ ); def(Bytecodes::_astore , ubcp|____|____|iswd, vtos, vtos, wide_astore , _ ); def(Bytecodes::_iinc , ubcp|____|____|iswd, vtos, vtos, wide_iinc , _ ); def(Bytecodes::_ret , ubcp|disp|____|iswd, vtos, vtos, wide_ret , _ ); def(Bytecodes::_breakpoint , ubcp|disp|clvm|____, vtos, vtos, _breakpoint , _ ); ... }
这里定义的意思就是,istore
使用无参数的生成器istore函数生成例程,这个生成器正是之前提到的那个很短的汇编代码:
void TemplateTable::istore() { transition(itos, vtos); locals_index(rbx); __ movl(iaddress(rbx), rax); }
ubcp
表示使用字节码指针,所谓字节码指针指的是该字节码的操作数是否存在于字节码里面,一图胜千言:
istore的index紧跟在istore(0x36)后面,所以istore需要移动字节码指针以获取index。
istore
还规定执行前栈顶缓存int值(itos),执行后不缓存(vtos),且istore还有一个wide版本,这个版本使用两个字节的index。
有了这些信息,可以试着解释多出的汇编是怎么回事了。set_entry_points()
为istore和wide版本的istore生成代码,
我们选择普通版本的istore解释,wide版本的依样画葫芦即可。它又进一步调用了set_short_entry_points()
:
void TemplateInterpreterGenerator::set_entry_points(Bytecodes::Code code) { ... if (Bytecodes::is_defined(code)) { Template* t = TemplateTable::template_for(code); assert(t->is_valid(), "just checking"); set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep); } if (Bytecodes::wide_is_defined(code)) { Template* t = TemplateTable::template_for_wide(code); assert(t->is_valid(), "just checking"); set_wide_entry_point(t, wep); } ... }void TemplateInterpreterGenerator::set_short_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) { assert(t->is_valid(), "template must exist"); switch (t->tos_in()) { case btos: case ztos: case ctos: case stos: ShouldNotReachHere(); // btos/ctos/stos should use itos. break; case atos: vep = __ pc(); __ pop(atos); aep = __ pc(); generate_and_dispatch(t); break; case itos: vep = __ pc(); __ pop(itos); iep = __ pc(); generate_and_dispatch(t); break; case ltos: vep = __ pc(); __ pop(ltos); lep = __ pc(); generate_and_dispatch(t); break; case ftos: vep = __ pc(); __ pop(ftos); fep = __ pc(); generate_and_dispatch(t); break; case dtos: vep = __ pc(); __ pop(dtos); dep = __ pc(); generate_and_dispatch(t); break; case vtos: set_vtos_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep); break; default : ShouldNotReachHere(); break; } }
set_short_entry_points
会根据该指令执行前是否需要栈顶缓存pop数据,istore使用了itos缓存,所以需要pop:
// hotspot\src\cpu\x86\vm\interp_masm_x86.cppsvoid InterpreterMacroAssembler::pop_i(Register r) { // XXX can't use pop currently, upper half non clean movl(r, Address(rsp, 0)); addptr(rsp, wordSize); }
稍微需要注意的是这里说的pop是一个弹出的概念,实际生成的代码是mov,试着解释那一大堆汇编:
mov指令
---------------------------------------------------------------------- istore 54 istore [0x00000192d1972ba0, 0x00000192d1972c00] 96 bytes ;获取栈顶int缓存 0x00000192d1972ba0: mov (%rsp),%eax 0x00000192d1972ba3: add $0x8,%rsp 0x00000192d1972ba7: movzbl 0x1(%r13),%ebx 0x00000192d1972bac: neg %rbx 0x00000192d1972baf: mov %eax,(%r14,%rbx,8) 0x00000192d1972bb3: movzbl 0x2(%r13),%ebx 0x00000192d1972bb8: add $0x2,%r13 0x00000192d1972bbc: movabs $0x7fffd56e0fa0,%r10 0x00000192d1972bc6: jmpq *(%r10,%rbx,8) 0x00000192d1972bca: mov (%rsp),%eax 0x00000192d1972bcd: add $0x8,%rsp 0x00000192d1972bd1: movzwl 0x2(%r13),%ebx 0x00000192d1972bd6: bswap %ebx 0x00000192d1972bd8: shr $0x10,%ebx 0x00000192d1972bdb: neg %rbx 0x00000192d1972bde: mov %eax,(%r14,%rbx,8) 0x00000192d1972be2: movzbl 0x4(%r13),%ebx 0x00000192d1972be7: add $0x4,%r13 0x00000192d1972beb: movabs $0x7fffd56e0fa0,%r10 0x00000192d1972bf5: jmpq *(%r10,%rbx,8) 0x00000192d1972bf9: nopl 0x0(%rax)
接着generate_and_dispatch()
又分为执行前(dispatch_prolog
)+执行字节码(t->generate()
)+执行后三部分(dispatch_epilog
):
void TemplateInterpreterGenerator::generate_and_dispatch(Template* t, TosState tos_out) { ... int step = 0; if (!t->does_dispatch()) { step = t->is_wide() ? Bytecodes::wide_length_for(t->bytecode()) : Bytecodes::length_for(t->bytecode()); if (tos_out == ilgl) tos_out = t->tos_out(); // compute bytecode size assert(step > 0, "just checkin'"); // setup stuff for dispatching next bytecode if (ProfileInterpreter && VerifyDataPointer && MethodData::bytecode_has_profile(t->bytecode())) { __ verify_method_data_pointer(); } __ dispatch_prolog(tos_out, step); } // generate template t->generate(_masm); // advance if (t->does_dispatch()) {#ifdef ASSERT // make sure execution doesn't go beyond this point if code is broken __ should_not_reach_here();#endif // ASSERT } else { // dispatch to next bytecode __ dispatch_epilog(tos_out, step); } }
x86的字节码执行前不会做任何事,所以没有其他代码:
---------------------------------------------------------------------- istore 54 istore [0x00000192d1972ba0, 0x00000192d1972c00] 96 bytes ;获取栈顶int缓存 0x00000192d1972ba0: mov (%rsp),%eax 0x00000192d1972ba3: add $0x8,%rsp ; 执行istore,即移动bcp指针获取index,放入局部变量槽 0x00000192d1972ba7: movzbl 0x1(%r13),%ebx 0x00000192d1972bac: neg %rbx 0x00000192d1972baf: mov %eax,(%r14,%rbx,8) 0x00000192d1972bb3: movzbl 0x2(%r13),%ebx 0x00000192d1972bb8: add $0x2,%r13 0x00000192d1972bbc: movabs $0x7fffd56e0fa0,%r10 0x00000192d1972bc6: jmpq *(%r10,%rbx,8) 0x00000192d1972bca: mov (%rsp),%eax 0x00000192d1972bcd: add $0x8,%rsp 0x00000192d1972bd1: movzwl 0x2(%r13),%ebx 0x00000192d1972bd6: bswap %ebx 0x00000192d1972bd8: shr $0x10,%ebx 0x00000192d1972bdb: neg %rbx 0x00000192d1972bde: mov %eax,(%r14,%rbx,8) 0x00000192d1972be2: movzbl 0x4(%r13),%ebx 0x00000192d1972be7: add $0x4,%r13 0x00000192d1972beb: movabs $0x7fffd56e0fa0,%r10 0x00000192d1972bf5: jmpq *(%r10,%rbx,8) 0x00000192d1972bf9: nopl 0x0(%rax)
执行后调用的是dispatch_prolog
:
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { dispatch_next(state, step); }void InterpreterMacroAssembler::dispatch_next(TosState state, int step) { // load next bytecode (load before advancing _bcp_register to prevent AGI) load_unsigned_byte(rbx, Address(_bcp_register, step)); // advance _bcp_register increment(_bcp_register, step); dispatch_base(state, Interpreter::dispatch_table(state)); }void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, bool verifyoop) { verify_FPU(1, state); if (VerifyActivationFrameSize) { Label L; mov(rcx, rbp); subptr(rcx, rsp); int32_t min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize; cmpptr(rcx, (int32_t)min_frame_size); jcc(Assembler::greaterEqual, L); stop("broken stack frame"); bind(L); } if (verifyoop) { verify_oop(rax, state); }#ifdef _LP64 // 防止意外执行到死代码 lea(rscratch1, ExternalAddress((address)table)); jmp(Address(rscratch1, rbx, Address::times_8));#else Address index(noreg, rbx, Address::times_ptr); ExternalAddress tbl((address)table); ArrayAddress dispatch(tbl, index); jump(dispatch);#endif // _LP64}
---------------------------------------------------------------------- istore 54 istore [0x00000192d1972ba0, 0x00000192d1972c00] 96 bytes ; 获取栈顶int缓存 0x00000192d1972ba0: mov (%rsp),%eax 0x00000192d1972ba3: add $0x8,%rsp ; 执行istore,即移动bcp指针获取index,放入局部变量槽 0x00000192d1972ba7: movzbl 0x1(%r13),%ebx 0x00000192d1972bac: neg %rbx 0x00000192d1972baf: mov %eax,(%r14,%rbx,8) ; 加载下一个字节码,istore后面一个字节是index,所以需要r13+2 0x00000192d1972bb3: movzbl 0x2(%r13),%ebx 0x00000192d1972bb8: add $0x2,%r13 ; 防止意外执行到死代码 0x00000192d1972bbc: movabs $0x7fffd56e0fa0,%r10 0x00000192d1972bc6: jmpq *(%r10,%rbx,8) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; 之前提到istore有一个wide版本的也会一并生成,wide istore格式如下 ; wide istore byte1, byte2 [四个字节] ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; 获取栈顶缓存的int 0x00000192d1972bca: mov (%rsp),%eax 0x00000192d1972bcd: add $0x8,%rsp ; 获取两个字节的index 0x00000192d1972bd1: movzwl 0x2(%r13),%ebx ; 除两个字节的index外0填充,比如当前index分别为2,2,扩展后ebx=0x00000202 0x00000192d1972bd6: bswap %ebx ; 4个字节反序,ebx=0x02020000 0x00000192d1972bd8: shr $0x10,%ebx ; ebx=0x00000202 0x00000192d1972bdb: neg %rbx ; 取负数 0x00000192d1972bde: mov %eax,(%r14,%rbx,8) ; r14-rbx*8, ; 加载下一个字节码,wide istore byte1,byte2 所以r13+4 0x00000192d1972be2: movzbl 0x4(%r13),%ebx 0x00000192d1972be7: add $0x4,%r13 ; 防止意外执行到死代码 0x00000192d1972beb: movabs $0x7fffd56e0fa0,%r10 0x00000192d1972bf5: jmpq *(%r10,%rbx,8) 0x00000192d1972bf9: nopl 0x0(%rax)
作者:racaljk
共同学习,写下你的评论
评论加载中...
作者其他优质文章