准备工作
首先得安装scala:CentOS7.x 安装scala
伪集群搭建没做过的参考:CentOS7.x Hadoop集群搭建
下载解压
配置
1. 配置环境变量
/etc/profile
export SPARK_HOME=/home/fantj/sparkexport PATH=$PATH:$SPARK_HOME/binexport CLASSPAHT=.:$CLASSPATH:$JAVA_HOME/lib:$JAVA_HOME/jre/lib
2. 配置/conf/spark-env.sh
cp spark-env.sh.template spark-env.sh
给尾部添加环境变量:
export JAVA_HOME=/home/fantj/jdkexport SCALA_HOME=/home/fantj/scalaexport SPARK_MASTER_IP=s166export SPARK_WORKER_MEMORY=1gexport HADOOP_CONF_DIR=/home/fantj/hadoop/etc/hadoop
3. 配置/conf/slaves.conf
cp slaves.template slaves.conf
新添数据:
spark2 spark3 spark4
同步配置到slave节点
将spark和scala 和配置文件拷贝到每个slave节点。
1099 scp -r scala-2.11.7 spark-1.5.1-bin-hadoop2.4/ s168:/home/fantj/download/ 1100 scp -r scala-2.11.7 spark-1.5.1-bin-hadoop2.4/ s169:/home/fantj/download/ 1135 scp /etc/profile s167:/etc/profile 1136 scp /etc/profile s168:/etc/profile 1137 scp /etc/profile s169:/etc/profile
启动spark
首先得启动hadoop或者只启动hdfs。
start-dfs.sh
命令。jps查看并确保主从机的hadoop的dfs都启动后。(主:NameNode,从:DataNode)
在
spark
的根目录下执行./sbin/start-all.sh
,如果想要slave节点也跟着启动,需要做免密码登录。没有做的话可以用相同的命令一个一个节点去启动。
[root@s166 spark]# ./sbin/start-all.sh starting org.apache.spark.deploy.master.Master, logging to /home/fantj/download/spark-1.5.1-bin-hadoop2.4/sbin/../logs/spark-root-org.apache.spark.deploy.master.Master-1-s166.outlocalhost: starting org.apache.spark.deploy.worker.Worker, logging to /home/fantj/download/spark-1.5.1-bin-hadoop2.4/sbin/../logs/spark-root-org.apache.spark.deploy.worker.Worker-1-s166.outlocalhost: starting org.apache.spark.deploy.worker.Worker, logging to /home/fantj/download/spark-1.5.1-bin-hadoop2.4/sbin/../logs/spark-root-org.apache.spark.deploy.worker.Worker-1-s167.outlocalhost: starting org.apache.spark.deploy.worker.Worker, logging to /home/fantj/download/spark-1.5.1-bin-hadoop2.4/sbin/../logs/spark-root-org.apache.spark.deploy.worker.Worker-1-s168.outlocalhost: starting org.apache.spark.deploy.worker.Worker, logging to /home/fantj/download/spark-1.5.1-bin-hadoop2.4/sbin/../logs/spark-root-org.apache.spark.deploy.worker.Worker-1-s169.out
再查看jps
-------s166 jps ------- 1397 NameNode 52854 Worker 1559 SecondaryNameNode 53671 Jps 52719 Master -------s167 jps ------- 1764 DataNode 29092 Jps 28414 Worker -------s168 jps ------- 33921 Worker 1756 DataNode 34063 Jps -------s169 jps ------- 27384 Jps 1754 DataNode 27242 Worker
可以看到,一个Master
三个Worker
。
然后再访问主节点ip的8080端口。
打开Spark-shell
[root@s166 bin]# spark-shell 18/07/30 12:34:16 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 18/07/30 12:34:20 INFO spark.SecurityManager: Changing view acls to: root 18/07/30 12:34:20 INFO spark.SecurityManager: Changing modify acls to: root 18/07/30 12:34:20 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root); users with modify permissions: Set(root) 18/07/30 12:34:22 INFO spark.HttpServer: Starting HTTP Server 18/07/30 12:34:23 INFO server.Server: jetty-8.y.z-SNAPSHOT 18/07/30 12:34:23 INFO server.AbstractConnector: Started SocketConnector@0.0.0.0:35005 18/07/30 12:34:23 INFO util.Utils: Successfully started service 'HTTP class server' on port 35005. ... ... 18/07/30 12:38:39 INFO session.SessionState: Created local directory: /tmp/2c350bb0-1297-40d8-a9bd-47446b116bf3_resources 18/07/30 12:38:39 INFO session.SessionState: Created HDFS directory: /tmp/hive/root/2c350bb0-1297-40d8-a9bd-47446b116bf3 18/07/30 12:38:39 INFO session.SessionState: Created local directory: /tmp/root/2c350bb0-1297-40d8-a9bd-47446b116bf3 18/07/30 12:38:40 INFO session.SessionState: Created HDFS directory: /tmp/hive/root/2c350bb0-1297-40d8-a9bd-47446b116bf3/_tmp_space.db 18/07/30 12:38:40 INFO repl.SparkILoop: Created sql context (with Hive support).. SQL context available as sqlContext. scala>
这就证明开启成功了,同理访问4040
端口。
作者:PlayInJava
链接:https://www.jianshu.com/p/821f1396b3dd
点击查看更多内容
为 TA 点赞
评论
共同学习,写下你的评论
评论加载中...
作者其他优质文章
正在加载中
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦