为了账号安全,请及时绑定邮箱和手机立即绑定

Spark Streaming之MapWithStateDSteam

标签:
Spark

MapWithStateDStream

MapWithStateDStreammapWithState算子的结果;

def stateSnapshots(): DStream[(KeyType, StateType)]
  • MapWithStateDStreamsealed abstract class类型,因此所有其实现均在其srouce文件中可见;

  • MapWithStateDStreamImplMapWithStateDStream的唯一实现;

sealed关键字的作用:

其修饰的trait,class只能在当前文件里面被继承
用sealed修饰这样做的目的是告诉scala编译器在检查模式匹配的时候,让scala知道这些case的所有情况,scala就能够在编译的时候进行检查,看你写的代码是否有没有漏掉什么没case到,减少编程的错误。

MapWithStateDStreamImpl

  • MapWithStateDStreamImpl为内部(私有)、其父依赖为key-value的DStream;

  • 其内部实现依赖`InternalMapWithStateDStream类;

  • slideDuration/dependencies值均取自internalStream变量;

InternalMapWithStateDStream

  • InternalMapWithStateDStream用于实现MapWithStateDStreamImpl

  • 其集成DStream[MapWithStateRDDRecord[K, S, E]]类,并默认使用MEMORY_ONLY存储级别;

  • 其使用StateSpecHashPartitioner作为其分区;

  • 其强制执行checkpoint(override val mustCheckpoint = true),如果checkpointDuration为空,则设置为sliceDuration窗口大小;

InternalMapWithStateDStream.compute()

  /** Method that generates an RDD for the given time */
  // 生成给定时间的RDD,其主要作用是将State操作->转换为MapWithRecordRDD
  override def compute(validTime: Time): Option[RDD[MapWithStateRDDRecord[K, S, E]]] = {    // Get the previous state or create a new empty state RDD
    val prevStateRDD = getOrCompute(validTime - slideDuration) match {      case Some(rdd) =>        if (rdd.partitioner != Some(partitioner)) {          // If the RDD is not partitioned the right way, let us repartition it using the
          // partition index as the key. This is to ensure that state RDD is always partitioned
          // before creating another state RDD using it
          // 如果之前的RDD的partition不一致,需要基于partition index作为key进行repartition,
          // 这是确保state RDD 在使用之前是paritition正确
          MapWithStateRDD.createFromRDD[K, V, S, E](
            rdd.flatMap { _.stateMap.getAll() }, partitioner, validTime)
        } else {
          rdd
        }      case None =>
        MapWithStateRDD.createFromPairRDD[K, V, S, E](
          spec.getInitialStateRDD().getOrElse(new EmptyRDD[(K, S)](ssc.sparkContext)),
          partitioner,
          validTime
        )
    }    // Compute the new state RDD with previous state RDD and partitioned data RDD
    // Even if there is no data RDD, use an empty one to create a new state RDD
    // 基于之前的state RDD,计算新的RDD
    // 如果没有data RDD,使用一个空的创建
    val dataRDD = parent.getOrCompute(validTime).getOrElse {
      context.sparkContext.emptyRDD[(K, V)]
    }
    val partitionedDataRDD = dataRDD.partitionBy(partitioner)
    val timeoutThresholdTime = spec.getTimeoutInterval().map { interval =>
      (validTime - interval).milliseconds
    }
    Some(new MapWithStateRDD(
      prevStateRDD, partitionedDataRDD, mappingFunction, validTime, timeoutThresholdTime))
  }

下面我们研究MapWithStateRDD.createFromPairRDD方法,

def createFromPairRDD[K: ClassTag, V: ClassTag, S: ClassTag, E: ClassTag](
      pairRDD: RDD[(K, S)],
      partitioner: Partitioner,
      updateTime: Time): MapWithStateRDD[K, V, S, E] = {    
    // 将pairRDD转换为 MapWithStateRDDRecord()
    val stateRDD = pairRDD.partitionBy(partitioner).mapPartitions ({ iterator =>      val stateMap = StateMap.create[K, S](SparkEnv.get.conf)
      iterator.foreach { case (key, state) => stateMap.put(key, state, updateTime.milliseconds) }      Iterator(MapWithStateRDDRecord(stateMap, Seq.empty[E]))
    }, preservesPartitioning = true)    val emptyDataRDD = pairRDD.sparkContext.emptyRDD[(K, V)].partitionBy(partitioner)    val noOpFunc = (time: Time, key: K, value: Option[V], state: State[S]) => None

    new MapWithStateRDD[K, V, S, E](
      stateRDD, emptyDataRDD, noOpFunc, updateTime, None)
  }

MapWithStateRDD

  • 继承RDD, 其Dependencies依赖prevStateRDD和partitionedDataRDD;

RDD[MapWithStateRDDRecord[K, S, E]](
    partitionedDataRDD.sparkContext,    List(      new OneToOneDependency[MapWithStateRDDRecord[K, S, E]](prevStateRDD),      new OneToOneDependency(partitionedDataRDD))

其compute()逻辑:

 override def compute(
      partition: Partition, context: TaskContext): Iterator[MapWithStateRDDRecord[K, S, E]] = {    val stateRDDPartition = partition.asInstanceOf[MapWithStateRDDPartition]    val prevStateRDDIterator = prevStateRDD.iterator(
      stateRDDPartition.previousSessionRDDPartition, context)    val dataIterator = partitionedDataRDD.iterator(
      stateRDDPartition.partitionedDataRDDPartition, context)    val prevRecord = if (prevStateRDDIterator.hasNext) Some(prevStateRDDIterator.next()) else None
    val newRecord = MapWithStateRDDRecord.updateRecordWithData(
      prevRecord,
      dataIterator,
      mappingFunction,
      batchTime,
      timeoutThresholdTime,
      removeTimedoutData = doFullScan // remove timedout data only when full scan is enabled
    )    Iterator(newRecord)
  }

其主要依赖MapWithStateRDDRecord.updateRecordWithData的方法,生成一个Iterator迭代器,其中stateMap存储了key的状态,mappedData存储了mapping function函数的返回值

    // Create a new state map by cloning the previous one (if it exists) or by creating an empty one
    // 如果之前的state map存在,则clone它;
    // 否则则创建一个空的;
    // Key -> State之间的mapping ,存储了key的状态
    val newStateMap = prevRecord.map { _.stateMap.copy() }. getOrElse { new EmptyStateMap[K, S]() }    
    // 调动mappingFunction()的返回结果集,mapping function函数的返回值
    val mappedData = new ArrayBuffer[E]    
    // State的wrap实现
    val wrappedState = new StateImpl[S]()    // Call the mapping function on each record in the data iterator, and accordingly
    // update the states touched, and collect the data returned by the mapping function
    // 此处调用mappingFunction方法,并更新其state存储状态
    dataIterator.foreach { case (key, value) =>
      wrappedState.wrap(newStateMap.get(key))      val returned = mappingFunction(batchTime, key, Some(value), wrappedState)      if (wrappedState.isRemoved) {
        newStateMap.remove(key)
      } else if (wrappedState.isUpdated
          || (wrappedState.exists && timeoutThresholdTime.isDefined)) {
        newStateMap.put(key, wrappedState.get(), batchTime.milliseconds)
      }
      mappedData ++= returned
    }    // Get the timed out state records, call the mapping function on each and collect the
    // data returned
    // 用户可以设置超时时的处理机制,此处遍历所有超时key,并触发其超时逻辑
    if (removeTimedoutData && timeoutThresholdTime.isDefined) {
      newStateMap.getByTime(timeoutThresholdTime.get).foreach { case (key, state, _) =>
        wrappedState.wrapTimingOutState(state)        val returned = mappingFunction(batchTime, key, None, wrappedState)
        mappedData ++= returned
        newStateMap.remove(key)
      }
    }    MapWithStateRDDRecord(newStateMap, mappedData)
  }

StateMap

/** Internal interface for defining the map that keeps track of sessions. */private[streaming] abstract class StateMap[K, S] extends Serializable {  /** Get the state for a key if it exists */
  def get(key: K): Option[S]  /** Get all the keys and states whose updated time is older than the given threshold time */
  def getByTime(threshUpdatedTime: Long): Iterator[(K, S, Long)]  /** Get all the keys and states in this map. */
  def getAll(): Iterator[(K, S, Long)]  /** Add or update state */
  def put(key: K, state: S, updatedTime: Long): Unit  /** Remove a key */
  def remove(key: K): Unit  /**
   * Shallow copy `this` map to create a new state map.
   * Updates to the new map should not mutate `this` map.
   */
  def copy(): StateMap[K, S]

  def toDebugString(): String = toString()
}
  • 位置org.apache.spark.streaming.util.StateMap;

  • 存储Spark Streaming 状态信息类;

  • 默认提供EmptyStateMapOpenHashMapBasedStateMap两种实现;

  • OpenHashMap为支持nullabled的HashMap,其性能为jdk默认HashMap的5倍以上,但是当处理0.0/0/0L/non-exist值时,用户需要小心;

Demo

object SparkStatefulRunner {  /**
    * Aggregates User Sessions using Stateful Streaming transformations.
    *
    * Usage: SparkStatefulRunner <hostname> <port>
    * <hostname> and <port> describe the TCP server that Spark Streaming would connect to receive data.
    */
  def main(args: Array[String]): Unit = {    if (args.length < 2) {      System.err.println("Usage: SparkRunner <hostname> <port>")      System.exit(1)
    }    val sparkConfig = loadConfigOrThrow[SparkConfiguration]("spark")    val sparkContext = new SparkContext(sparkConfig.sparkMasterUrl, "Spark Stateful Streaming")    val ssc = new StreamingContext(sparkContext, Milliseconds(4000))
    ssc.checkpoint(sparkConfig.checkpointDirectory)    val stateSpec =      StateSpec
        .function(updateUserEvents _)
        .timeout(Minutes(sparkConfig.timeoutInMinutes))

    ssc
      .socketTextStream(args(0), args(1).toInt)
      .map(deserializeUserEvent)
      .filter(_ != UserEvent.empty)
      .mapWithState(stateSpec)
      .foreachRDD { rdd =>        if (!rdd.isEmpty()) {
          rdd.foreach(maybeUserSession => maybeUserSession.foreach {
            userSession =>              // Store user session here
              println(userSession)
          })
        }
      }

    ssc.start()
    ssc.awaitTermination()
  }  def deserializeUserEvent(json: String): (Int, UserEvent) = {
    json.decodeEither[UserEvent] match {      case \/-(userEvent) =>
        (userEvent.id, userEvent)      case -\/(error) =>
        println(s"Failed to parse user event: $error")
        (UserEvent.empty.id, UserEvent.empty)
    }
  }  def updateUserEvents(key: Int,
                       value: Option[UserEvent],
                       state: State[UserSession]): Option[UserSession] = {    def updateUserSessions(newEvent: UserEvent): Option[UserSession] = {      val existingEvents: Seq[UserEvent] =
        state
          .getOption()
          .map(_.userEvents)
          .getOrElse(Seq[UserEvent]())      val updatedUserSessions = UserSession(newEvent +: existingEvents)

      updatedUserSessions.userEvents.find(_.isLast) match {        case Some(_) =>
          state.remove()          Some(updatedUserSessions)        case None =>
          state.update(updatedUserSessions)          None
      }
    }

    value match {      case Some(newEvent) => updateUserSessions(newEvent)      case _ if state.isTimingOut() => state.getOption()
    }
  }
}



作者:分裂四人组
链接:https://www.jianshu.com/p/f5efa9a4c10c


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
  • 推荐
  • 1
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消