1、数据的中心化
所谓数据的中心化是指数据集中的各项数据减去数据集的均值。
例如有数据集1, 2, 3, 6, 3,其均值为3,那么中心化之后的数据集为1-3,2-3,3-3,6-3,3-3,即:-2,-1,0,3,0
2、数据的标准化
所谓数据的标准化是指中心化之后的数据在除以数据集的标准差,即数据集中的各项数据减去数据集的均值再除以数据集的标准差。
例如有数据集1, 2, 3, 6, 3,其均值为3,其标准差为1.87,那么标准化之后的数据集为(1-3)/1.87,(2-3)/1.87,(3-3)/1.87,(6-3)/1.87,(3-3)/1.87,即:-1.069,-0.535,0,1.604,0
数据中心化和标准化的意义是一样的,为了消除量纲对数据结构的影响。
在R语言中可以使用scale方法来对数据进行中心化和标准化:
#限定输出小数点后数字的位数为3位> options(digits=3) > data <- c(1, 2, 3, 6, 3) > scale(data, center=T,scale=F) #数据中心化 [,1] [1,] -2 [2,] -1 [3,] 0 [4,] 3 [5,] 0 attr(,"scaled:center") [1] 3 > scale(data, center=T,scale=T) #数据标准化 [,1] [1,] -1.069 [2,] -0.535 [3,] 0.000 [4,] 1.604 [5,] 0.000 attr(,"scaled:center") [1] 3 attr(,"scaled:scale") [1] 1.87
scale方法中的两个参数center和scale的解释:
1)center和scale默认为真,即T或者TRUE
2)center为真表示数据中心化
3)scale为真表示数据标准化
作者:谢俊飞
链接:https://www.jianshu.com/p/fc82ae05feb9
点击查看更多内容
为 TA 点赞
评论
共同学习,写下你的评论
评论加载中...
作者其他优质文章
正在加载中
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦