R语言第二章数据处理⑦dplyr包(2)列处理
=========================================
根据预先确定的列名选择列
还有另一个选项可以避免连续重新输入列名:one_of()
。 您可以预先设置列名,然后在select()
语句中通过将它们包装在one_of()
中或使用!!
运算符来引用它们。
classification <- c("name", "genus", "vore", "order", "conservation") msleep %>% select(!!classification)## # A tibble: 83 x 5## name genus vore order conservation## <chr> <chr> <chr> <chr> <chr> ## 1 Cheetah Acinonyx carni Carnivora lc ## 2 Owl monkey Aotus omni Primates <NA> ## 3 Mountain beaver Aplodontia herbi Rodentia nt ## 4 Greater short-tailed shrew Blarina omni Soricomorpha lc ## 5 Cow Bos herbi Artiodactyla domesticated## 6 Three-toed sloth Bradypus herbi Pilosa <NA> ## 7 Northern fur seal Callorhinus carni Carnivora vu ## 8 Vesper mouse Calomys <NA> Rodentia <NA> ## 9 Dog Canis carni Carnivora domesticated## 10 Roe deer Capreolus herbi Artiodactyla lc ## # ... with 73 more rows
根据数据类型选择列
select_if
函数允许您传递返回逻辑语句的函数。 例如,您可以使用select_if(is.character)
选择所有字符串列。 同样,你可以添加is.numeric
,is.integer
,is.double
,is.logical
,is.factor
。如果你有日期列,你可以加载lubridate
包,并使用is.POSIXt
或is.Date
。
msleep %>% select_if(is.numeric) %>% glimpse## Observations: 83## Variables: 6## $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1,...## $ sleep_rem <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0.6...## $ sleep_cycle <dbl> NA, NA, NA, 0.1333333, 0.6666667, 0.7666667, 0.383...## $ awake <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, 13.9, ...## $ brainwt <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0.0...## $ bodywt <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.49...
您也可以选择否定,但在这种情况下,您需要添加波形符以确保仍将函数传递给select_if
。 select_all / if / at函数需要将函数作为参数传递。 如果你必须添加任何否定或参数,你必须将你的函数包装在funs()
中,或者在重新创建函数之前添加波形符。
msleep %>% select_if(~!is.numeric(.)) %>% glimpse## Observations: 83## Variables: 5## $ name <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Grea... ## $ genus <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bo...## $ vore <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi... ## $ order <chr> "Carnivora", "Primates", "Rodentia", "Soricomorph...## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", N...
按逻辑表达式选择列
实际上,select_if
允许您根据任何逻辑函数进行选择,而不仅仅基于数据类型。 例如,可以选择平均值大于500的所有列。 为避免错误,您还必须仅选择数字列,您可以提前执行此操作以获得更简单的语法,也可以在同一行中执行。类似地,'mean> 500本身不是一个函数,所以你需要先添加一个代字号,或者将它包装在
funs()`中以将语句转换为函数。
msleep %>% select_if(is.numeric) %>% select_if(~mean(., na.rm=TRUE) > 10)
或者更简便:
msleep %>% select_if(~is.numeric(.) & mean(., na.rm=TRUE) > 10)## # A tibble: 83 x 3## sleep_total awake bodywt## <dbl> <dbl> <dbl>## 1 12.1 11.9 50.0 ## 2 17.0 7.00 0.480 ## 3 14.4 9.60 1.35 ## 4 14.9 9.10 0.0190## 5 4.00 20.0 600 ## 6 14.4 9.60 3.85 ## 7 8.70 15.3 20.5 ## 8 7.00 17.0 0.0450## 9 10.1 13.9 14.0 ## 10 3.00 21.0 14.8 ## # ... with 73 more rows
select_if
的另一个有用功能是n_distinct()
,它计算可以在列中找到的不同值的数量。例如,要返回少于10个不同答案的列,请在select_if语句中传递~n_distinct(。)<10
。 鉴于n_distinct(。)<10
不是函数,你需要在前面放一个波浪号。
msleep %>% select_if(~n_distinct(.) < 10)## # A tibble: 83 x 2## vore conservation## <chr> <chr> ## 1 carni lc ## 2 omni <NA> ## 3 herbi nt ## 4 omni lc ## 5 herbi domesticated## 6 herbi <NA> ## 7 carni vu ## 8 <NA> <NA> ## 9 carni domesticated## 10 herbi lc ## # ... with 73 more rows
对列重新排序
您可以使用select()
函数(见下文)重新排序列。 您选择它们的顺序将决定最终的顺序。
msleep %>% select(conservation, sleep_total, name) %>% glimpse## Observations: 83## Variables: 3## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", N...## $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1...## $ name <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Grea...
如果你只是想将几列移到前面,你可以在之后使用everything()
这将简便地添加所有剩余的列。
msleep %>% select(conservation, sleep_total, everything()) %>% glimpse## Observations: 83## Variables: 11## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", N...## $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1...## $ name <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Grea... ## $ genus <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bo...## $ vore <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi... ## $ order <chr> "Carnivora", "Primates", "Rodentia", "Soricomorph...## $ sleep_rem <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0....## $ sleep_cycle <dbl> NA, NA, NA, 0.1333333, 0.6666667, 0.7666667, 0.38...## $ awake <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, 13.9,...## $ brainwt <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0....## $ bodywt <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.4...
列名
有时候列名称本身需要进行更改:
重命名列
如果您将使用select()
语句,则可以在select
函数中直接重命名。
msleep %>% select(animal = name, sleep_total, extinction_threat = conservation) %>% glimpse## Observations: 83## Variables: 3## $ animal <chr> "Cheetah", "Owl monkey", "Mountain beaver", ...## $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0,...## $ extinction_threat <chr> "lc", NA, "nt", "lc", "domesticated", NA, "v...
如果要保留所有列,因此不能使用select()
语句,可以通过添加rename()
语句来重命名。
msleep %>% rename(animal = name, extinction_threat = conservation) %>% glimpse## Observations: 83## Variables: 11## $ animal <chr> "Cheetah", "Owl monkey", "Mountain beaver", ...## $ genus <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina"...## $ vore <chr> "carni", "omni", "herbi", "omni", "herbi", "... ## $ order <chr> "Carnivora", "Primates", "Rodentia", "Sorico...## $ extinction_threat <chr> "lc", NA, "nt", "lc", "domesticated", NA, "v... ## $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0,... ## $ sleep_rem <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, N... ## $ sleep_cycle <dbl> NA, NA, NA, 0.1333333, 0.6666667, 0.7666667,... ## $ awake <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, ... ## $ brainwt <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, N... ## $ bodywt <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850,...
格式化所有列名
select_all()
函数允许更改所有列,并将函数作为参数。如果想以大写形式获取所有列名,可以使用toupper()
,同样可以使用小写tolower()
。
msleep %>% select_all(toupper)## # A tibble: 83 x 11## NAME GENUS VORE ORDER CONSERVATION SLEEP_TOTAL SLEEP_REM SLEEP_CYCLE## <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>## 1 Cheet~ Acin~ carni Carn~ lc 12.1 NA NA ## 2 Owl m~ Aotus omni Prim~ <NA> 17.0 1.80 NA ## 3 Mount~ Aplo~ herbi Rode~ nt 14.4 2.40 NA ## 4 Great~ Blar~ omni Sori~ lc 14.9 2.30 0.133## 5 Cow Bos herbi Arti~ domesticated 4.00 0.700 0.667## 6 Three~ Brad~ herbi Pilo~ <NA> 14.4 2.20 0.767## 7 North~ Call~ carni Carn~ vu 8.70 1.40 0.383## 8 Vespe~ Calo~ <NA> Rode~ <NA> 7.00 NA NA ## 9 Dog Canis carni Carn~ domesticated 10.1 2.90 0.333## 10 Roe d~ Capr~ herbi Arti~ lc 3.00 NA NA ## # ... with 73 more rows, and 3 more variables: AWAKE <dbl>, BRAINWT <dbl>,## # BODYWT <dbl>
你可以通过动态创建函数来进一步:如果你有来自excel杂乱的列名,你可以用下划线替换所有的空格。
#making an unclean database:msleep2 <- select(msleep, name, sleep_total, brainwt) colnames(msleep2) <- c("name", "sleep total", "brain weight") msleep2 %>% select_all(~str_replace(., " ", "_"))## # A tibble: 83 x 3## name sleep_total brain_weight## <chr> <dbl> <dbl>## 1 Cheetah 12.1 NA ## 2 Owl monkey 17.0 0.0155 ## 3 Mountain beaver 14.4 NA ## 4 Greater short-tailed shrew 14.9 0.000290## 5 Cow 4.00 0.423 ## 6 Three-toed sloth 14.4 NA ## 7 Northern fur seal 8.70 NA ## 8 Vesper mouse 7.00 NA ## 9 Dog 10.1 0.0700 ## 10 Roe deer 3.00 0.0982 ## # ... with 73 more rows
或者,如果您的列包含其他数据,例如问题编号:
#making an unclean database:msleep2 <- select(msleep, name, sleep_total, brainwt) colnames(msleep2) <- c("Q1 name", "Q2 sleep total", "Q3 brain weight") msleep2[1:3,]## # A tibble: 3 x 3## `Q1 name` `Q2 sleep total` `Q3 brain weight`## <chr> <dbl> <dbl>## 1 Cheetah 12.1 NA ## 2 Owl monkey 17.0 0.0155## 3 Mountain beaver 14.4 NA
您可以将select_all
与str_replace
结合使用以消除额外的字符。
msleep2 %>% select_all(~str_replace(., "Q[0-9]+", "")) %>% select_all(~str_replace(., " ", "_")) ## # A tibble: 83 x 3## `_name` `_sleep total` `_brain weight`## <chr> <dbl> <dbl>## 1 Cheetah 12.1 NA ## 2 Owl monkey 17.0 0.0155 ## 3 Mountain beaver 14.4 NA ## 4 Greater short-tailed shrew 14.9 0.000290## 5 Cow 4.00 0.423 ## 6 Three-toed sloth 14.4 NA ## 7 Northern fur seal 8.70 NA ## 8 Vesper mouse 7.00 NA ## 9 Dog 10.1 0.0700 ## 10 Roe deer 3.00 0.0982 ## # ... with 73 more rows
行名转换成列
某些数据框的行名本身有意义,例如mtcars数据集:
mtcars %>% head## mpg cyl disp hp drat wt qsec vs am gear carb## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 ## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 ## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 ## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 ## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 ## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
如果希望此列成为实际列,则可以使用rownames_to_column()
函数,并指定新列名。
mtcars %>% tibble::rownames_to_column("car_model") %>% head## car_model mpg cyl disp hp drat wt qsec vs am gear carb## 1 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 ## 2 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 ## 3 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 ## 4 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 ## 5 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 ## 6 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
作者:赛乾
链接:https://www.jianshu.com/p/7b79e191a640
共同学习,写下你的评论
评论加载中...
作者其他优质文章