为了账号安全,请及时绑定邮箱和手机立即绑定

深入理解Spark 2.1 Core (四):运算结果处理和容错的原理与源码分析

标签:
Spark

TaskScheduler在发送任务给executor前的工作就全部完成了。这篇博文,我们来看看当executor计算完任务后,Spark是如何处理获取的计算结果与容错的。

调用栈如下:

  • TaskSchedulerImpl.statusUpdate

  • TaskResultGetter.enqueueSuccessfulTask

    • TaskSetManager.handleFailedTask

    • DAGSchedulerEventProcessLoop.doOnReceive

    • DAGScheduler.handleTaskCompletion

    • DAGScheduler.taskEnded

    • TaskSetManager.handleSuccessfulTask

    • DAGSchedulerEventProcessLoop.doOnReceive

    • DAGScheduler.handleTaskCompletion

    • DAGScheduler.taskEnded

    • TaskSchedulerImpl.handleSuccessfulTask

    • TaskResultGetter.enqueueFailedTask

    • TaskSchedulerImpl.handleFailedTask

TaskSchedulerImpl.statusUpdate

TaskRunner将任务的执行结果发送给DriverEndPoint,DriverEndPoint会转给TaskSchedulerImpl的statusUpdate:

def statusUpdate(tid: Long, state: TaskState, serializedData: ByteBuffer) {    var failedExecutor: Option[String] = None
    var reason: Option[ExecutorLossReason] = None
    synchronized {      try {
        taskIdToTaskSetManager.get(tid) match {          case Some(taskSet) =>          //这只针对Mesos调度模式
            if (state == TaskState.LOST) {              val execId = taskIdToExecutorId.getOrElse(tid, throw new IllegalStateException(                "taskIdToTaskSetManager.contains(tid) <=> taskIdToExecutorId.contains(tid)"))              if (executorIdToRunningTaskIds.contains(execId)) {
                reason = Some(                  SlaveLost(s"Task $tid was lost, so marking the executor as lost as well."))
                removeExecutor(execId, reason.get)
                failedExecutor = Some(execId)
              }
            }            //FINISHED KILLED LOST 都属于 isFinished
            if (TaskState.isFinished(state)) {
              cleanupTaskState(tid)
              taskSet.removeRunningTask(tid)              //若FINISHED调用taskResultGetter.enqueueSuccessfulTask,
              //否则调用taskResultGetter.enqueueFailedTask(taskSet, tid, state, serializedData)
              if (state == TaskState.FINISHED) {
                taskResultGetter.enqueueSuccessfulTask(taskSet, tid, serializedData)
              } else if (Set(TaskState.FAILED, TaskState.KILLED, TaskState.LOST).contains(state)) {
                taskResultGetter.enqueueFailedTask(taskSet, tid, state, serializedData)
              }
            }          case None =>
            logError(
              ("Ignoring update with state %s for TID %s because its task set is gone (this is " +                "likely the result of receiving duplicate task finished status updates) or its " +                "executor has been marked as failed.")
                .format(state, tid))
        }
      } catch {        case e: Exception => logError("Exception in statusUpdate", e)
      }
    }    if (failedExecutor.isDefined) {
      assert(reason.isDefined)
      dagScheduler.executorLost(failedExecutor.get, reason.get)
      backend.reviveOffers()
    }
  }

处理执行成功的结果

我们先来看下处理执行成功的结果的运行机制:

TaskResultGetter.enqueueSuccessfulTask

  def enqueueSuccessfulTask(
      taskSetManager: TaskSetManager,
      tid: Long,
      serializedData: ByteBuffer): Unit = {      //通过线程池来获取结果
    getTaskResultExecutor.execute(new Runnable {      override def run(): Unit = Utils.logUncaughtExceptions {        try {          val (result, size) = serializer.get().deserialize[TaskResult[_]](serializedData) match {          //可以直接获取到的结果
            case directResult: DirectTaskResult[_] =>            //判断大小是否符合要求
              if (!taskSetManager.canFetchMoreResults(serializedData.limit())) {                return
              }
            
        directResult.value(taskResultSerializer.get())
              (directResult, serializedData.limit())              //若不能直接获取到结果
            case IndirectTaskResult(blockId, size) =>              if (!taskSetManager.canFetchMoreResults(size)) {                // 判断大小是否符合要求,
                //若不符合则远程的删除计算结果
                sparkEnv.blockManager.master.removeBlock(blockId)                return
              }
              logDebug("Fetching indirect task result for TID %s".format(tid))
              scheduler.handleTaskGettingResult(taskSetManager, tid)              val serializedTaskResult = sparkEnv.blockManager.getRemoteBytes(blockId)              //从远程获取计算结果
              if (!serializedTaskResult.isDefined) {              //若在任务执行结束后与我们去获取结果之间机器出现故障了
              //或者block manager 不得不刷新结果了
              //那么我们将不能够获取到结果
                scheduler.handleFailedTask(
                  taskSetManager, tid, TaskState.FINISHED, TaskResultLost)                return
              }              val deserializedResult = serializer.get().deserialize[DirectTaskResult[_]](
                serializedTaskResult.get.toByteBuffer)              // 反序列化
              deserializedResult.value(taskResultSerializer.get())
              sparkEnv.blockManager.master.removeBlock(blockId)
              (deserializedResult, size)
          }

         
          result.accumUpdates = result.accumUpdates.map { a =>            if (a.name == Some(InternalAccumulator.RESULT_SIZE)) {              val acc = a.asInstanceOf[LongAccumulator]
              assert(acc.sum == 0L, "task result size should not have been set on the executors")
              acc.setValue(size.toLong)
              acc
            } else {
              a
            }
          }          //处理获取到的计算结果
          scheduler.handleSuccessfulTask(taskSetManager, tid, result)
        } catch {          case cnf: ClassNotFoundException =>            val loader = Thread.currentThread.getContextClassLoader
            taskSetManager.abort("ClassNotFound with classloader: " + loader)          case NonFatal(ex) =>
            logError("Exception while getting task result", ex)
            taskSetManager.abort("Exception while getting task result: %s".format(ex))
        }
      }
    })
  }

TaskSchedulerImpl.handleSuccessfulTask

调用taskSetManager.handleSuccessfulTask

 def handleSuccessfulTask(
      taskSetManager: TaskSetManager,
      tid: Long,
      taskResult: DirectTaskResult[_]): Unit = synchronized {
    taskSetManager.handleSuccessfulTask(tid, taskResult)
  }

TaskSetManager.handleSuccessfulTask

  def handleSuccessfulTask(tid: Long, result: DirectTaskResult[_]): Unit = {    val info = taskInfos(tid)    val index = info.index
    info.markFinished(TaskState.FINISHED)    //从RunningTask中移除该task
    removeRunningTask(tid)   //通知dagScheduler该task完成
    sched.dagScheduler.taskEnded(tasks(index), Success, result.value(), result.accumUpdates, info)    //杀死所有其他与之相同的task的尝试
    for (attemptInfo <- taskAttempts(index) if attemptInfo.running) {
      logInfo(s"Killing attempt ${attemptInfo.attemptNumber} for task ${attemptInfo.id} " +        s"in stage ${taskSet.id} (TID ${attemptInfo.taskId}) on ${attemptInfo.host} " +        s"as the attempt ${info.attemptNumber} succeeded on ${info.host}")
      sched.backend.killTask(attemptInfo.taskId, attemptInfo.executorId, true)
    }    if (!successful(index)) {    //计数
      tasksSuccessful += 1
      logInfo(s"Finished task ${info.id} in stage ${taskSet.id} (TID ${info.taskId}) in" +        s" ${info.duration} ms on ${info.host} (executor ${info.executorId})" +        s" ($tasksSuccessful/$numTasks)")      //若果有所task成功了,
      //那么标记successful,并且停止
      successful(index) = true
      if (tasksSuccessful == numTasks) {
        isZombie = true
      }
    } else {
      logInfo("Ignoring task-finished event for " + info.id + " in stage " + taskSet.id +        " because task " + index + " has already completed successfully")
    }
    maybeFinishTaskSet()
  }

DAGScheduler.taskEnded

我们再深入看下是如何通知dagScheduler该task完成的:

  def taskEnded(
      task: Task[_],
      reason: TaskEndReason,
      result: Any,
      accumUpdates: Seq[AccumulatorV2[_, _]],
      taskInfo: TaskInfo): Unit = {      //发送CompletionEvent信号
    eventProcessLoop.post(      CompletionEvent(task, reason, result, accumUpdates, taskInfo))
  }

DAGSchedulerEventProcessLoop.doOnReceive

上一篇博文讲过,DAGSchedulerEventProcessLoop的doOnReceive会对信号进行监听:

    case completion: CompletionEvent =>
      dagScheduler.handleTaskCompletion(completion)

DAGScheduler.handleTaskCompletion

我们来看下DAGScheduler.handleTaskCompletion部分核心代码:

***    //根据stageId 得到stage
    val stage = stageIdToStage(task.stageId)    //这里的event就是completion
    event.reason match {    //这里只看成功的流程
      case Success =>      //将这个task 从stage等待处理分区中删去
        stage.pendingPartitions -= task.partitionId
        task match {        //若是最后一个Stage的task
          case rt: ResultTask[_, _] =>          //将stage 转为 ResultStage
            val resultStage = stage.asInstanceOf[ResultStage]
            resultStage.activeJob match {            //获取这Stage的job
              case Some(job) =>                if (!job.finished(rt.outputId)) {
                  updateAccumulators(event)                  //标记状态
                  job.finished(rt.outputId) = true
                  //计数
                  job.numFinished += 1
                  // 若Job的所有partition都完成了,
                  //移除这个Job
                  if (job.numFinished == job.numPartitions) {
                    markStageAsFinished(resultStage)
                    cleanupStateForJobAndIndependentStages(job)
                    listenerBus.post(                      SparkListenerJobEnd(job.jobId, clock.getTimeMillis(), JobSucceeded))
                  }                  //通知 JobWaiter 有任务成功
                  //但 taskSucceeded 会运行用户自定义的代码
                  //因此可能抛出异常 
                  try {
                    job.listener.taskSucceeded(rt.outputId, event.result)
                  } catch {                    case e: Exception =>                      // 标记为失败
                      job.listener.jobFailed(new SparkDriverExecutionException(e))
                  }
                }              case None =>
                logInfo("Ignoring result from " + rt + " because its job has finished")
            }          //若不是最后一个Stage的Task
          case smt: ShuffleMapTask =>            val shuffleStage = stage.asInstanceOf[ShuffleMapStage]
            updateAccumulators(event)            val status = event.result.asInstanceOf[MapStatus]            val execId = status.location.executorId
            logDebug("ShuffleMapTask finished on " + execId)            if (failedEpoch.contains(execId) && smt.epoch <= failedEpoch(execId)) {
              logInfo(s"Ignoring possibly bogus $smt completion from executor $execId")
            } else {            //将Task的partitionId和status
            //追加到OutputLoc
              shuffleStage.addOutputLoc(smt.partitionId, status)
            }            if (runningStages.contains(shuffleStage) && shuffleStage.pendingPartitions.isEmpty) {
              markStageAsFinished(shuffleStage)
              logInfo("looking for newly runnable stages")
              logInfo("running: " + runningStages)
              logInfo("waiting: " + waitingStages)
              logInfo("failed: " + failedStages)            //将outputLoc信息注册到mapOutputTracker
            //上篇博文中有提到:
            //首先ShuffleMapTask的计算结果(其实是计算结果数据所在的位置、大小等元数据信息)都会传给Driver的mapOutputTracker。
            // 所以 DAGScheduler.newOrUsedShuffleStage需要先判断Stage是否已经被计算过
            ///若计算过,DAGScheduler.newOrUsedShuffleStage则把结果复制到新创建的stage
            //如果没计算过,DAGScheduler.newOrUsedShuffleStage就向注册mapOutputTracker Stage,为存储元数据占位
              mapOutputTracker.registerMapOutputs(
                shuffleStage.shuffleDep.shuffleId,
                shuffleStage.outputLocInMapOutputTrackerFormat(),
                changeEpoch = true)

              clearCacheLocs()             
              if (!shuffleStage.isAvailable) {                //若Stage不可用(一些任务失败),则从新提交Stage            
                logInfo("Resubmitting " + shuffleStage + " (" + shuffleStage.name +                  ") because some of its tasks had failed: " +
                  shuffleStage.findMissingPartitions().mkString(", "))
                submitStage(shuffleStage)
              } else {                // 若该Stage的所有分区都完成了
                if (shuffleStage.mapStageJobs.nonEmpty) {                  val stats = mapOutputTracker.getStatistics(shuffleStage.shuffleDep)                  //将各个Task的标记为Finished
                  for (job <- shuffleStage.mapStageJobs) {
                    markMapStageJobAsFinished(job, stats)
                  }
                }                //提交该Stage的正在等在的Child Stages
                submitWaitingChildStages(shuffleStage)
              }
            }
        }
  ***

处理执行失败的结果

TaskResultGetter.enqueueFailedTask

下面,我们回归头来看如何处理失败的结果。

  def enqueueFailedTask(taskSetManager: TaskSetManager, tid: Long, taskState: TaskState,
    serializedData: ByteBuffer) {    var reason : TaskFailedReason = UnknownReason
    try {    //通过线程池来处理结果
      getTaskResultExecutor.execute(new Runnable {        override def run(): Unit = Utils.logUncaughtExceptions {          val loader = Utils.getContextOrSparkClassLoader          try {          //若序列化数据,即TaskFailedReason,存在且长度大于0
          //则反序列化获取它
            if (serializedData != null && serializedData.limit() > 0) {
              reason = serializer.get().deserialize[TaskFailedReason](
                serializedData, loader)
            }
          } catch {          //若是ClassNotFoundException,
          //打印log
            case cnd: ClassNotFoundException =>
              logError(                "Could not deserialize TaskEndReason: ClassNotFound with classloader " + loader)                //若其他异常,
                //不进行操作
            case ex: Exception => 
          }          //处理失败的任务
          scheduler.handleFailedTask(taskSetManager, tid, taskState, reason)
        }
      })
    } catch {      case e: RejectedExecutionException if sparkEnv.isStopped =>
    }
  }

TaskSchedulerImpl.handleFailedTask

  def handleFailedTask(
      taskSetManager: TaskSetManager,
      tid: Long,
      taskState: TaskState,
      reason: TaskFailedReason): Unit = synchronized {      //处理失败任务
    taskSetManager.handleFailedTask(tid, taskState, reason)    if (!taskSetManager.isZombie && taskState != TaskState.KILLED) {    //handleFailedTask会将失败任务放入待运行的队列等待下一次调度
    //所以这里开始新的一轮调度
      backend.reviveOffers()
    }
  }

TaskSetManager.handleFailedTask

我们来看下handleFailedTask核心代码:

***    //调用dagScheduler处理失败任务
    sched.dagScheduler.taskEnded(tasks(index), reason, null, accumUpdates, info)    if (successful(index)) {
      logInfo(        s"Task ${info.id} in stage ${taskSet.id} (TID $tid) failed, " +        "but another instance of the task has already succeeded, " +        "so not re-queuing the task to be re-executed.")
    } else {    //将这个任务重新加入到等待队列中
      addPendingTask(index)
    }    if (!isZombie && reason.countTowardsTaskFailures) {
      taskSetBlacklistHelperOpt.foreach(_.updateBlacklistForFailedTask(
        info.host, info.executorId, index))
      assert (null != failureReason)      //计数 这个任务的重试次数
      numFailures(index) += 1
      //若大于等于最大重试次数,默认为4,
      //则取消这个任务
      if (numFailures(index) >= maxTaskFailures) {
        logError("Task %d in stage %s failed %d times; aborting job".format(
          index, taskSet.id, maxTaskFailures))
        abort("Task %d in stage %s failed %d times, most recent failure: %s\nDriver stacktrace:"
          .format(index, taskSet.id, maxTaskFailures, failureReason), failureException)        return
      }
    }
    maybeFinishTaskSet()
  }

DAGScheduler.handleTaskCompletion

与处理成功结果的过程相同,接下来也会调用DAGScheduler.taskEnded。DAGSchedulerEventProcessLoop的doOnReceive接收CompletionEvent信号,调用dagScheduler.handleTaskCompletion(completion)

我们来看下DAGScheduler.handleTaskCompletion 处理失败任务部分的核心代码:

       //重新提交任务
      case Resubmitted =>
        logInfo("Resubmitted " + task + ", so marking it as still running")        //把任务加入的等待队列
        stage.pendingPartitions += task.partitionId      //获取结果失败
      case FetchFailed(bmAddress, shuffleId, mapId, reduceId, failureMessage) =>        val failedStage = stageIdToStage(task.stageId)        val mapStage = shuffleIdToMapStage(shuffleId)        //若失败的尝试ID 不是 stage尝试ID,
        //则忽略这个失败
        if (failedStage.latestInfo.attemptId != task.stageAttemptId) {
          logInfo(s"Ignoring fetch failure from $task as it's from $failedStage attempt" +            s" ${task.stageAttemptId} and there is a more recent attempt for that stage " +            s"(attempt ID ${failedStage.latestInfo.attemptId}) running")
        } else {          //若失败的Stage还在运行队列,
          //标记这个Stage完成
          if (runningStages.contains(failedStage)) {
            logInfo(s"Marking $failedStage (${failedStage.name}) as failed " +              s"due to a fetch failure from $mapStage (${mapStage.name})")
            markStageAsFinished(failedStage, Some(failureMessage))
          } else {
            logDebug(s"Received fetch failure from $task, but its from $failedStage which is no " +              s"longer running")
          }          //若不允许重试,
          //则停止这个Stage
          if (disallowStageRetryForTest) {
            abortStage(failedStage, "Fetch failure will not retry stage due to testing config",              None)
          } 
         //若达到最大重试次数,
         //则停止这个Stage
          else if (failedStage.failedOnFetchAndShouldAbort(task.stageAttemptId)) {
            abortStage(failedStage, s"$failedStage (${failedStage.name}) " +              s"has failed the maximum allowable number of " +              s"times: ${Stage.MAX_CONSECUTIVE_FETCH_FAILURES}. " +              s"Most recent failure reason: ${failureMessage}", None)
          } else {            if (failedStages.isEmpty) {            //若失败的Stage中,没有个task完成了,
            //则重新提交Stage。
            //若果有完成的task的话,我们不能重新提交Stage,
            //因为有些task已经被调度过了。
            //task级别的重新提交是在TaskSetManager.handleFailedTask进行的
              logInfo(s"Resubmitting $mapStage (${mapStage.name}) and " +                s"$failedStage (${failedStage.name}) due to fetch failure")
              messageScheduler.schedule(new Runnable {                override def run(): Unit = eventProcessLoop.post(ResubmitFailedStages)
              }, DAGScheduler.RESUBMIT_TIMEOUT, TimeUnit.MILLISECONDS)
            }
            failedStages += failedStage
            failedStages += mapStage
          }          // 移除OutputLoc中的数据
          // 取消注册mapOutputTracker
          if (mapId != -1) {
            mapStage.removeOutputLoc(mapId, bmAddress)
            mapOutputTracker.unregisterMapOutput(shuffleId, mapId, bmAddress)
          }          //当有executor上发生多次获取结果失败,
          //则标记这个executor丢失
          if (bmAddress != null) {
            handleExecutorLost(bmAddress.executorId, filesLost = true, Some(task.epoch))
          }
        }      //拒绝处理
      case commitDenied: TaskCommitDenied =>        // 不做任何事,
        //让 TaskScheduler 来决定如何处理

      //异常
      case exceptionFailure: ExceptionFailure =>        // 更新accumulator
        updateAccumulators(event)      //task结果丢失
      case TaskResultLost =>      // 不做任何事,
      // 让 TaskScheduler 处理这些错误和重新提交任务

     // executor 丢失
     // 任务被杀死
     // 未知错误
      case _: ExecutorLostFailure | TaskKilled | UnknownReason =>        // 不做任何事,
        // 若这task不断的错误,
        // TaskScheduler 会停止 job



作者:小爷Souljoy
链接:https://www.jianshu.com/p/447b48654b8f


点击查看更多内容
TA 点赞

若觉得本文不错,就分享一下吧!

评论

作者其他优质文章

正在加载中
JAVA开发工程师
手记
粉丝
40
获赞与收藏
125

关注作者,订阅最新文章

阅读免费教程

  • 推荐
  • 评论
  • 收藏
  • 共同学习,写下你的评论
感谢您的支持,我会继续努力的~
扫码打赏,你说多少就多少
赞赏金额会直接到老师账户
支付方式
打开微信扫一扫,即可进行扫码打赏哦
今天注册有机会得

100积分直接送

付费专栏免费学

大额优惠券免费领

立即参与 放弃机会
意见反馈 帮助中心 APP下载
官方微信

举报

0/150
提交
取消